NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  intunsn GIF version

Theorem intunsn 3966
Description: Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002.)
Hypothesis
Ref Expression
intunsn.1 B V
Assertion
Ref Expression
intunsn (A ∪ {B}) = (AB)

Proof of Theorem intunsn
StepHypRef Expression
1 intun 3959 . 2 (A ∪ {B}) = (A{B})
2 intunsn.1 . . . 4 B V
32intsn 3963 . . 3 {B} = B
43ineq2i 3455 . 2 (A{B}) = (AB)
51, 4eqtri 2373 1 (A ∪ {B}) = (AB)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642   wcel 1710  Vcvv 2860  cun 3208  cin 3209  {csn 3738  cint 3927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-sn 3742  df-pr 3743  df-int 3928
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator