| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > intunsn | GIF version | ||
| Description: Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002.) |
| Ref | Expression |
|---|---|
| intunsn.1 | ⊢ B ∈ V |
| Ref | Expression |
|---|---|
| intunsn | ⊢ ∩(A ∪ {B}) = (∩A ∩ B) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intun 3959 | . 2 ⊢ ∩(A ∪ {B}) = (∩A ∩ ∩{B}) | |
| 2 | intunsn.1 | . . . 4 ⊢ B ∈ V | |
| 3 | 2 | intsn 3963 | . . 3 ⊢ ∩{B} = B |
| 4 | 3 | ineq2i 3455 | . 2 ⊢ (∩A ∩ ∩{B}) = (∩A ∩ B) |
| 5 | 1, 4 | eqtri 2373 | 1 ⊢ ∩(A ∪ {B}) = (∩A ∩ B) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1642 ∈ wcel 1710 Vcvv 2860 ∪ cun 3208 ∩ cin 3209 {csn 3738 ∩cint 3927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-sn 3742 df-pr 3743 df-int 3928 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |