Step | Hyp | Ref
| Expression |
1 | | vn0 3558 |
. . . . . 6
⊢ V ≠ ∅ |
2 | | inteq 3930 |
. . . . . . . . . . 11
⊢ (A = ∅ →
∩A = ∩∅) |
3 | | int0 3941 |
. . . . . . . . . . 11
⊢ ∩∅ = V |
4 | 2, 3 | syl6eq 2401 |
. . . . . . . . . 10
⊢ (A = ∅ →
∩A =
V) |
5 | 4 | adantl 452 |
. . . . . . . . 9
⊢ ((∪A = ∩A ∧ A = ∅) → ∩A = V) |
6 | | unieq 3901 |
. . . . . . . . . . . 12
⊢ (A = ∅ →
∪A = ∪∅) |
7 | | uni0 3919 |
. . . . . . . . . . . 12
⊢ ∪∅ = ∅ |
8 | 6, 7 | syl6eq 2401 |
. . . . . . . . . . 11
⊢ (A = ∅ →
∪A = ∅) |
9 | | eqeq1 2359 |
. . . . . . . . . . 11
⊢ (∪A = ∩A → (∪A = ∅ ↔ ∩A = ∅)) |
10 | 8, 9 | syl5ib 210 |
. . . . . . . . . 10
⊢ (∪A = ∩A → (A = ∅ →
∩A = ∅)) |
11 | 10 | imp 418 |
. . . . . . . . 9
⊢ ((∪A = ∩A ∧ A = ∅) → ∩A = ∅) |
12 | 5, 11 | eqtr3d 2387 |
. . . . . . . 8
⊢ ((∪A = ∩A ∧ A = ∅) → V = ∅) |
13 | 12 | ex 423 |
. . . . . . 7
⊢ (∪A = ∩A → (A = ∅ → V =
∅)) |
14 | 13 | necon3d 2555 |
. . . . . 6
⊢ (∪A = ∩A → (V ≠
∅ → A ≠ ∅)) |
15 | 1, 14 | mpi 16 |
. . . . 5
⊢ (∪A = ∩A → A ≠ ∅) |
16 | | n0 3560 |
. . . . 5
⊢ (A ≠ ∅ ↔
∃x
x ∈
A) |
17 | 15, 16 | sylib 188 |
. . . 4
⊢ (∪A = ∩A → ∃x x ∈ A) |
18 | | vex 2863 |
. . . . . . 7
⊢ x ∈
V |
19 | | vex 2863 |
. . . . . . 7
⊢ y ∈
V |
20 | 18, 19 | prss 3862 |
. . . . . 6
⊢ ((x ∈ A ∧ y ∈ A) ↔ {x,
y} ⊆
A) |
21 | | uniss 3913 |
. . . . . . . . . . . . 13
⊢ ({x, y} ⊆ A →
∪{x, y} ⊆ ∪A) |
22 | 21 | adantl 452 |
. . . . . . . . . . . 12
⊢ ((∪A = ∩A ∧ {x, y} ⊆ A) → ∪{x, y} ⊆ ∪A) |
23 | | simpl 443 |
. . . . . . . . . . . 12
⊢ ((∪A = ∩A ∧ {x, y} ⊆ A) → ∪A = ∩A) |
24 | 22, 23 | sseqtrd 3308 |
. . . . . . . . . . 11
⊢ ((∪A = ∩A ∧ {x, y} ⊆ A) → ∪{x, y} ⊆ ∩A) |
25 | | intss 3948 |
. . . . . . . . . . . 12
⊢ ({x, y} ⊆ A →
∩A ⊆ ∩{x, y}) |
26 | 25 | adantl 452 |
. . . . . . . . . . 11
⊢ ((∪A = ∩A ∧ {x, y} ⊆ A) → ∩A ⊆ ∩{x, y}) |
27 | 24, 26 | sstrd 3283 |
. . . . . . . . . 10
⊢ ((∪A = ∩A ∧ {x, y} ⊆ A) → ∪{x, y} ⊆ ∩{x, y}) |
28 | 18, 19 | unipr 3906 |
. . . . . . . . . 10
⊢ ∪{x, y} = (x ∪
y) |
29 | 18, 19 | intpr 3960 |
. . . . . . . . . 10
⊢ ∩{x, y} = (x ∩
y) |
30 | 27, 28, 29 | 3sstr3g 3312 |
. . . . . . . . 9
⊢ ((∪A = ∩A ∧ {x, y} ⊆ A) → (x
∪ y) ⊆ (x ∩
y)) |
31 | | inss1 3476 |
. . . . . . . . . 10
⊢ (x ∩ y) ⊆ x |
32 | | ssun1 3427 |
. . . . . . . . . 10
⊢ x ⊆ (x ∪ y) |
33 | 31, 32 | sstri 3282 |
. . . . . . . . 9
⊢ (x ∩ y) ⊆ (x ∪
y) |
34 | 30, 33 | jctir 524 |
. . . . . . . 8
⊢ ((∪A = ∩A ∧ {x, y} ⊆ A) → ((x
∪ y) ⊆ (x ∩
y) ∧
(x ∩ y) ⊆ (x ∪ y))) |
35 | | eqss 3288 |
. . . . . . . . 9
⊢ ((x ∪ y) =
(x ∩ y) ↔ ((x
∪ y) ⊆ (x ∩
y) ∧
(x ∩ y) ⊆ (x ∪ y))) |
36 | | uneqin 3507 |
. . . . . . . . 9
⊢ ((x ∪ y) =
(x ∩ y) ↔ x =
y) |
37 | 35, 36 | bitr3i 242 |
. . . . . . . 8
⊢ (((x ∪ y) ⊆ (x ∩
y) ∧
(x ∩ y) ⊆ (x ∪ y))
↔ x = y) |
38 | 34, 37 | sylib 188 |
. . . . . . 7
⊢ ((∪A = ∩A ∧ {x, y} ⊆ A) → x =
y) |
39 | 38 | ex 423 |
. . . . . 6
⊢ (∪A = ∩A → ({x, y} ⊆ A →
x = y)) |
40 | 20, 39 | syl5bi 208 |
. . . . 5
⊢ (∪A = ∩A → ((x ∈ A ∧ y ∈ A) → x =
y)) |
41 | 40 | alrimivv 1632 |
. . . 4
⊢ (∪A = ∩A → ∀x∀y((x ∈ A ∧ y ∈ A) → x =
y)) |
42 | 17, 41 | jca 518 |
. . 3
⊢ (∪A = ∩A → (∃x x ∈ A ∧ ∀x∀y((x ∈ A ∧ y ∈ A) → x =
y))) |
43 | | euabsn 3793 |
. . . 4
⊢ (∃!x x ∈ A ↔ ∃x{x ∣ x ∈ A} = {x}) |
44 | | eleq1 2413 |
. . . . 5
⊢ (x = y →
(x ∈
A ↔ y ∈ A)) |
45 | 44 | eu4 2243 |
. . . 4
⊢ (∃!x x ∈ A ↔ (∃x x ∈ A ∧ ∀x∀y((x ∈ A ∧ y ∈ A) → x =
y))) |
46 | | abid2 2471 |
. . . . . 6
⊢ {x ∣ x ∈ A} = A |
47 | 46 | eqeq1i 2360 |
. . . . 5
⊢ ({x ∣ x ∈ A} = {x} ↔
A = {x}) |
48 | 47 | exbii 1582 |
. . . 4
⊢ (∃x{x ∣ x ∈ A} = {x} ↔
∃x
A = {x}) |
49 | 43, 45, 48 | 3bitr3i 266 |
. . 3
⊢ ((∃x x ∈ A ∧ ∀x∀y((x ∈ A ∧ y ∈ A) → x =
y)) ↔ ∃x A = {x}) |
50 | 42, 49 | sylib 188 |
. 2
⊢ (∪A = ∩A → ∃x A = {x}) |
51 | 18 | unisn 3908 |
. . . 4
⊢ ∪{x} = x |
52 | | unieq 3901 |
. . . 4
⊢ (A = {x} →
∪A = ∪{x}) |
53 | | inteq 3930 |
. . . . 5
⊢ (A = {x} →
∩A = ∩{x}) |
54 | 18 | intsn 3963 |
. . . . 5
⊢ ∩{x} = x |
55 | 53, 54 | syl6eq 2401 |
. . . 4
⊢ (A = {x} →
∩A = x) |
56 | 51, 52, 55 | 3eqtr4a 2411 |
. . 3
⊢ (A = {x} →
∪A = ∩A) |
57 | 56 | exlimiv 1634 |
. 2
⊢ (∃x A = {x} →
∪A = ∩A) |
58 | 50, 57 | impbii 180 |
1
⊢ (∪A = ∩A ↔ ∃x A = {x}) |