NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  uniintsn GIF version

Theorem uniintsn 3964
Description: Two ways to express "A is a singleton." See also en1 in set.mm, en1b in set.mm, card1 in set.mm, and eusn 3797. (Contributed by NM, 2-Aug-2010.)
Assertion
Ref Expression
uniintsn (A = Ax A = {x})
Distinct variable group:   x,A

Proof of Theorem uniintsn
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 vn0 3558 . . . . . 6 V ≠
2 inteq 3930 . . . . . . . . . . 11 (A = A = )
3 int0 3941 . . . . . . . . . . 11 = V
42, 3syl6eq 2401 . . . . . . . . . 10 (A = A = V)
54adantl 452 . . . . . . . . 9 ((A = A A = ) → A = V)
6 unieq 3901 . . . . . . . . . . . 12 (A = A = )
7 uni0 3919 . . . . . . . . . . . 12 =
86, 7syl6eq 2401 . . . . . . . . . . 11 (A = A = )
9 eqeq1 2359 . . . . . . . . . . 11 (A = A → (A = A = ))
108, 9syl5ib 210 . . . . . . . . . 10 (A = A → (A = A = ))
1110imp 418 . . . . . . . . 9 ((A = A A = ) → A = )
125, 11eqtr3d 2387 . . . . . . . 8 ((A = A A = ) → V = )
1312ex 423 . . . . . . 7 (A = A → (A = → V = ))
1413necon3d 2555 . . . . . 6 (A = A → (V ≠ A))
151, 14mpi 16 . . . . 5 (A = AA)
16 n0 3560 . . . . 5 (Ax x A)
1715, 16sylib 188 . . . 4 (A = Ax x A)
18 vex 2863 . . . . . . 7 x V
19 vex 2863 . . . . . . 7 y V
2018, 19prss 3862 . . . . . 6 ((x A y A) ↔ {x, y} A)
21 uniss 3913 . . . . . . . . . . . . 13 ({x, y} A{x, y} A)
2221adantl 452 . . . . . . . . . . . 12 ((A = A {x, y} A) → {x, y} A)
23 simpl 443 . . . . . . . . . . . 12 ((A = A {x, y} A) → A = A)
2422, 23sseqtrd 3308 . . . . . . . . . . 11 ((A = A {x, y} A) → {x, y} A)
25 intss 3948 . . . . . . . . . . . 12 ({x, y} AA {x, y})
2625adantl 452 . . . . . . . . . . 11 ((A = A {x, y} A) → A {x, y})
2724, 26sstrd 3283 . . . . . . . . . 10 ((A = A {x, y} A) → {x, y} {x, y})
2818, 19unipr 3906 . . . . . . . . . 10 {x, y} = (xy)
2918, 19intpr 3960 . . . . . . . . . 10 {x, y} = (xy)
3027, 28, 293sstr3g 3312 . . . . . . . . 9 ((A = A {x, y} A) → (xy) (xy))
31 inss1 3476 . . . . . . . . . 10 (xy) x
32 ssun1 3427 . . . . . . . . . 10 x (xy)
3331, 32sstri 3282 . . . . . . . . 9 (xy) (xy)
3430, 33jctir 524 . . . . . . . 8 ((A = A {x, y} A) → ((xy) (xy) (xy) (xy)))
35 eqss 3288 . . . . . . . . 9 ((xy) = (xy) ↔ ((xy) (xy) (xy) (xy)))
36 uneqin 3507 . . . . . . . . 9 ((xy) = (xy) ↔ x = y)
3735, 36bitr3i 242 . . . . . . . 8 (((xy) (xy) (xy) (xy)) ↔ x = y)
3834, 37sylib 188 . . . . . . 7 ((A = A {x, y} A) → x = y)
3938ex 423 . . . . . 6 (A = A → ({x, y} Ax = y))
4020, 39syl5bi 208 . . . . 5 (A = A → ((x A y A) → x = y))
4140alrimivv 1632 . . . 4 (A = Axy((x A y A) → x = y))
4217, 41jca 518 . . 3 (A = A → (x x A xy((x A y A) → x = y)))
43 euabsn 3793 . . . 4 (∃!x x Ax{x x A} = {x})
44 eleq1 2413 . . . . 5 (x = y → (x Ay A))
4544eu4 2243 . . . 4 (∃!x x A ↔ (x x A xy((x A y A) → x = y)))
46 abid2 2471 . . . . . 6 {x x A} = A
4746eqeq1i 2360 . . . . 5 ({x x A} = {x} ↔ A = {x})
4847exbii 1582 . . . 4 (x{x x A} = {x} ↔ x A = {x})
4943, 45, 483bitr3i 266 . . 3 ((x x A xy((x A y A) → x = y)) ↔ x A = {x})
5042, 49sylib 188 . 2 (A = Ax A = {x})
5118unisn 3908 . . . 4 {x} = x
52 unieq 3901 . . . 4 (A = {x} → A = {x})
53 inteq 3930 . . . . 5 (A = {x} → A = {x})
5418intsn 3963 . . . . 5 {x} = x
5553, 54syl6eq 2401 . . . 4 (A = {x} → A = x)
5651, 52, 553eqtr4a 2411 . . 3 (A = {x} → A = A)
5756exlimiv 1634 . 2 (x A = {x} → A = A)
5850, 57impbii 180 1 (A = Ax A = {x})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wal 1540  wex 1541   = wceq 1642   wcel 1710  ∃!weu 2204  {cab 2339  wne 2517  Vcvv 2860  cun 3208  cin 3209   wss 3258  c0 3551  {csn 3738  {cpr 3739  cuni 3892  cint 3927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928
This theorem is referenced by:  uniintab  3965
  Copyright terms: Public domain W3C validator