| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > iotajust | GIF version | ||
| Description: Soundness justification theorem for df-iota 4340. (Contributed by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| iotajust | ⊢ ∪{y ∣ {x ∣ φ} = {y}} = ∪{z ∣ {x ∣ φ} = {z}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 3745 | . . . . 5 ⊢ (y = w → {y} = {w}) | |
| 2 | 1 | eqeq2d 2364 | . . . 4 ⊢ (y = w → ({x ∣ φ} = {y} ↔ {x ∣ φ} = {w})) |
| 3 | 2 | cbvabv 2473 | . . 3 ⊢ {y ∣ {x ∣ φ} = {y}} = {w ∣ {x ∣ φ} = {w}} |
| 4 | sneq 3745 | . . . . 5 ⊢ (w = z → {w} = {z}) | |
| 5 | 4 | eqeq2d 2364 | . . . 4 ⊢ (w = z → ({x ∣ φ} = {w} ↔ {x ∣ φ} = {z})) |
| 6 | 5 | cbvabv 2473 | . . 3 ⊢ {w ∣ {x ∣ φ} = {w}} = {z ∣ {x ∣ φ} = {z}} |
| 7 | 3, 6 | eqtri 2373 | . 2 ⊢ {y ∣ {x ∣ φ} = {y}} = {z ∣ {x ∣ φ} = {z}} |
| 8 | 7 | unieqi 3902 | 1 ⊢ ∪{y ∣ {x ∣ φ} = {y}} = ∪{z ∣ {x ∣ φ} = {z}} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1642 {cab 2339 {csn 3738 ∪cuni 3892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-sn 3742 df-uni 3893 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |