New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > unieqi | GIF version |
Description: Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unieqi.1 | ⊢ A = B |
Ref | Expression |
---|---|
unieqi | ⊢ ∪A = ∪B |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieqi.1 | . 2 ⊢ A = B | |
2 | unieq 3901 | . 2 ⊢ (A = B → ∪A = ∪B) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∪A = ∪B |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∪cuni 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-uni 3893 |
This theorem is referenced by: elunirab 3905 unisn 3908 iotajust 4339 dfiota2 4341 cbviota 4345 sb8iota 4347 dfiota4 4373 op1sta 5073 opswap 5075 op2nda 5077 funfv2 5377 funfv2f 5378 fvco2 5383 funiunfv 5468 elunirn 5471 uniqs 5985 |
Copyright terms: Public domain | W3C validator |