New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iuneq1 | GIF version |
Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
iuneq1 | ⊢ (A = B → ∪x ∈ A C = ∪x ∈ B C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunss1 3981 | . . 3 ⊢ (A ⊆ B → ∪x ∈ A C ⊆ ∪x ∈ B C) | |
2 | iunss1 3981 | . . 3 ⊢ (B ⊆ A → ∪x ∈ B C ⊆ ∪x ∈ A C) | |
3 | 1, 2 | anim12i 549 | . 2 ⊢ ((A ⊆ B ∧ B ⊆ A) → (∪x ∈ A C ⊆ ∪x ∈ B C ∧ ∪x ∈ B C ⊆ ∪x ∈ A C)) |
4 | eqss 3288 | . 2 ⊢ (A = B ↔ (A ⊆ B ∧ B ⊆ A)) | |
5 | eqss 3288 | . 2 ⊢ (∪x ∈ A C = ∪x ∈ B C ↔ (∪x ∈ A C ⊆ ∪x ∈ B C ∧ ∪x ∈ B C ⊆ ∪x ∈ A C)) | |
6 | 3, 4, 5 | 3imtr4i 257 | 1 ⊢ (A = B → ∪x ∈ A C = ∪x ∈ B C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ⊆ wss 3258 ∪ciun 3970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-iun 3972 |
This theorem is referenced by: iuneq1d 3993 iununi 4051 |
Copyright terms: Public domain | W3C validator |