NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  iuneq1 GIF version

Theorem iuneq1 3983
Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
iuneq1 (A = Bx A C = x B C)
Distinct variable groups:   x,A   x,B
Allowed substitution hint:   C(x)

Proof of Theorem iuneq1
StepHypRef Expression
1 iunss1 3981 . . 3 (A Bx A C x B C)
2 iunss1 3981 . . 3 (B Ax B C x A C)
31, 2anim12i 549 . 2 ((A B B A) → (x A C x B C x B C x A C))
4 eqss 3288 . 2 (A = B ↔ (A B B A))
5 eqss 3288 . 2 (x A C = x B C ↔ (x A C x B C x B C x A C))
63, 4, 53imtr4i 257 1 (A = Bx A C = x B C)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642   wss 3258  ciun 3970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-iun 3972
This theorem is referenced by:  iuneq1d  3993  iununi  4051
  Copyright terms: Public domain W3C validator