Step | Hyp | Ref
| Expression |
1 | | ssel 3268 |
. . . . . . 7
⊢ (A ⊆ C → (x
∈ A
→ x ∈ C)) |
2 | | ssel 3268 |
. . . . . . 7
⊢ (B ⊆ C → (x
∈ B
→ x ∈ C)) |
3 | | pm5.1 830 |
. . . . . . 7
⊢ (((x ∈ A → x ∈ C) ∧ (x ∈ B →
x ∈
C)) → ((x ∈ A → x ∈ C) ↔
(x ∈
B → x ∈ C))) |
4 | 1, 2, 3 | syl2an 463 |
. . . . . 6
⊢ ((A ⊆ C ∧ B ⊆ C) → ((x
∈ A
→ x ∈ C) ↔
(x ∈
B → x ∈ C))) |
5 | | con2b 324 |
. . . . . . 7
⊢ ((x ∈ A → ¬ x
∈ B)
↔ (x ∈ B →
¬ x ∈
A)) |
6 | 5 | a1i 10 |
. . . . . 6
⊢ ((A ⊆ C ∧ B ⊆ C) → ((x
∈ A
→ ¬ x ∈ B) ↔
(x ∈
B → ¬ x ∈ A))) |
7 | 4, 6 | anbi12d 691 |
. . . . 5
⊢ ((A ⊆ C ∧ B ⊆ C) → (((x
∈ A
→ x ∈ C) ∧ (x ∈ A →
¬ x ∈
B)) ↔ ((x ∈ B → x ∈ C) ∧ (x ∈ B →
¬ x ∈
A)))) |
8 | | jcab 833 |
. . . . 5
⊢ ((x ∈ A → (x
∈ C ∧ ¬ x ∈ B)) ↔
((x ∈
A → x ∈ C) ∧ (x ∈ A → ¬ x
∈ B))) |
9 | | jcab 833 |
. . . . 5
⊢ ((x ∈ B → (x
∈ C ∧ ¬ x ∈ A)) ↔
((x ∈
B → x ∈ C) ∧ (x ∈ B → ¬ x
∈ A))) |
10 | 7, 8, 9 | 3bitr4g 279 |
. . . 4
⊢ ((A ⊆ C ∧ B ⊆ C) → ((x
∈ A
→ (x ∈ C ∧ ¬ x ∈ B)) ↔
(x ∈
B → (x ∈ C ∧ ¬ x ∈ A)))) |
11 | | eldif 3222 |
. . . . 5
⊢ (x ∈ (C ∖ B) ↔ (x
∈ C ∧ ¬ x ∈ B)) |
12 | 11 | imbi2i 303 |
. . . 4
⊢ ((x ∈ A → x ∈ (C ∖ B)) ↔
(x ∈
A → (x ∈ C ∧ ¬ x ∈ B))) |
13 | | eldif 3222 |
. . . . 5
⊢ (x ∈ (C ∖ A) ↔ (x
∈ C ∧ ¬ x ∈ A)) |
14 | 13 | imbi2i 303 |
. . . 4
⊢ ((x ∈ B → x ∈ (C ∖ A)) ↔
(x ∈
B → (x ∈ C ∧ ¬ x ∈ A))) |
15 | 10, 12, 14 | 3bitr4g 279 |
. . 3
⊢ ((A ⊆ C ∧ B ⊆ C) → ((x
∈ A
→ x ∈ (C ∖ B)) ↔
(x ∈
B → x ∈ (C ∖ A)))) |
16 | 15 | albidv 1625 |
. 2
⊢ ((A ⊆ C ∧ B ⊆ C) → (∀x(x ∈ A → x ∈ (C ∖ B)) ↔
∀x(x ∈ B →
x ∈
(C ∖
A)))) |
17 | | dfss2 3263 |
. 2
⊢ (A ⊆ (C ∖ B) ↔ ∀x(x ∈ A → x ∈ (C ∖ B))) |
18 | | dfss2 3263 |
. 2
⊢ (B ⊆ (C ∖ A) ↔ ∀x(x ∈ B → x ∈ (C ∖ A))) |
19 | 16, 17, 18 | 3bitr4g 279 |
1
⊢ ((A ⊆ C ∧ B ⊆ C) → (A
⊆ (C
∖ B)
↔ B ⊆ (C ∖ A))) |