New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ltfinp1 | GIF version |
Description: One plus a finite cardinal is strictly greater. (Contributed by SF, 29-Jan-2015.) |
Ref | Expression |
---|---|
ltfinp1 | ⊢ ((A ∈ V ∧ A ≠ ∅) → ⟪A, (A +c 1c)⟫ ∈ <fin ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 447 | . . 3 ⊢ ((A ∈ V ∧ A ≠ ∅) → A ≠ ∅) | |
2 | peano1 4403 | . . . 4 ⊢ 0c ∈ Nn | |
3 | addcid1 4406 | . . . . . 6 ⊢ (A +c 0c) = A | |
4 | 3 | addceq1i 4387 | . . . . 5 ⊢ ((A +c 0c) +c 1c) = (A +c 1c) |
5 | 4 | eqcomi 2357 | . . . 4 ⊢ (A +c 1c) = ((A +c 0c) +c 1c) |
6 | addceq2 4385 | . . . . . . 7 ⊢ (x = 0c → (A +c x) = (A +c 0c)) | |
7 | 6 | addceq1d 4390 | . . . . . 6 ⊢ (x = 0c → ((A +c x) +c 1c) = ((A +c 0c) +c 1c)) |
8 | 7 | eqeq2d 2364 | . . . . 5 ⊢ (x = 0c → ((A +c 1c) = ((A +c x) +c 1c) ↔ (A +c 1c) = ((A +c 0c) +c 1c))) |
9 | 8 | rspcev 2956 | . . . 4 ⊢ ((0c ∈ Nn ∧ (A +c 1c) = ((A +c 0c) +c 1c)) → ∃x ∈ Nn (A +c 1c) = ((A +c x) +c 1c)) |
10 | 2, 5, 9 | mp2an 653 | . . 3 ⊢ ∃x ∈ Nn (A +c 1c) = ((A +c x) +c 1c) |
11 | 1, 10 | jctir 524 | . 2 ⊢ ((A ∈ V ∧ A ≠ ∅) → (A ≠ ∅ ∧ ∃x ∈ Nn (A +c 1c) = ((A +c x) +c 1c))) |
12 | 1cex 4143 | . . . . 5 ⊢ 1c ∈ V | |
13 | addcexg 4394 | . . . . 5 ⊢ ((A ∈ V ∧ 1c ∈ V) → (A +c 1c) ∈ V) | |
14 | 12, 13 | mpan2 652 | . . . 4 ⊢ (A ∈ V → (A +c 1c) ∈ V) |
15 | opkltfing 4450 | . . . 4 ⊢ ((A ∈ V ∧ (A +c 1c) ∈ V) → (⟪A, (A +c 1c)⟫ ∈ <fin ↔ (A ≠ ∅ ∧ ∃x ∈ Nn (A +c 1c) = ((A +c x) +c 1c)))) | |
16 | 14, 15 | mpdan 649 | . . 3 ⊢ (A ∈ V → (⟪A, (A +c 1c)⟫ ∈ <fin ↔ (A ≠ ∅ ∧ ∃x ∈ Nn (A +c 1c) = ((A +c x) +c 1c)))) |
17 | 16 | adantr 451 | . 2 ⊢ ((A ∈ V ∧ A ≠ ∅) → (⟪A, (A +c 1c)⟫ ∈ <fin ↔ (A ≠ ∅ ∧ ∃x ∈ Nn (A +c 1c) = ((A +c x) +c 1c)))) |
18 | 11, 17 | mpbird 223 | 1 ⊢ ((A ∈ V ∧ A ≠ ∅) → ⟪A, (A +c 1c)⟫ ∈ <fin ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ≠ wne 2517 ∃wrex 2616 Vcvv 2860 ∅c0 3551 ⟪copk 4058 1cc1c 4135 Nn cnnc 4374 0cc0c 4375 +c cplc 4376 <fin cltfin 4434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-pr 3743 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-p6 4192 df-sik 4193 df-ssetk 4194 df-0c 4378 df-addc 4379 df-nnc 4380 df-ltfin 4442 |
This theorem is referenced by: ltfintri 4467 |
Copyright terms: Public domain | W3C validator |