New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > spacssnc | GIF version |
Description: The special set generator generates a set of cardinals. (Contributed by SF, 13-Mar-2015.) |
Ref | Expression |
---|---|
spacssnc | ⊢ (N ∈ NC → ( Spac ‘N) ⊆ NC ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spacval 6283 | . 2 ⊢ (N ∈ NC → ( Spac ‘N) = Clos1 ({N}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x))})) | |
2 | snex 4112 | . . . 4 ⊢ {N} ∈ V | |
3 | spacvallem1 6282 | . . . 4 ⊢ {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x))} ∈ V | |
4 | eqid 2353 | . . . 4 ⊢ Clos1 ({N}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x))}) = Clos1 ({N}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x))}) | |
5 | 2, 3, 4 | clos1baseima 5884 | . . 3 ⊢ Clos1 ({N}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x))}) = ({N} ∪ ({〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x))} “ Clos1 ({N}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x))}))) |
6 | snssi 3853 | . . . . 5 ⊢ (N ∈ NC → {N} ⊆ NC ) | |
7 | imassrn 5010 | . . . . . 6 ⊢ ({〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x))} “ Clos1 ({N}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x))})) ⊆ ran {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x))} | |
8 | rnopab 4968 | . . . . . . 7 ⊢ ran {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x))} = {y ∣ ∃x(x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x))} | |
9 | simp2 956 | . . . . . . . . 9 ⊢ ((x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x)) → y ∈ NC ) | |
10 | 9 | exlimiv 1634 | . . . . . . . 8 ⊢ (∃x(x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x)) → y ∈ NC ) |
11 | 10 | abssi 3342 | . . . . . . 7 ⊢ {y ∣ ∃x(x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x))} ⊆ NC |
12 | 8, 11 | eqsstri 3302 | . . . . . 6 ⊢ ran {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x))} ⊆ NC |
13 | 7, 12 | sstri 3282 | . . . . 5 ⊢ ({〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x))} “ Clos1 ({N}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x))})) ⊆ NC |
14 | 6, 13 | jctir 524 | . . . 4 ⊢ (N ∈ NC → ({N} ⊆ NC ∧ ({〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x))} “ Clos1 ({N}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x))})) ⊆ NC )) |
15 | unss 3438 | . . . 4 ⊢ (({N} ⊆ NC ∧ ({〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x))} “ Clos1 ({N}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x))})) ⊆ NC ) ↔ ({N} ∪ ({〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x))} “ Clos1 ({N}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x))}))) ⊆ NC ) | |
16 | 14, 15 | sylib 188 | . . 3 ⊢ (N ∈ NC → ({N} ∪ ({〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x))} “ Clos1 ({N}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x))}))) ⊆ NC ) |
17 | 5, 16 | syl5eqss 3316 | . 2 ⊢ (N ∈ NC → Clos1 ({N}, {〈x, y〉 ∣ (x ∈ NC ∧ y ∈ NC ∧ y = (2c ↑c x))}) ⊆ NC ) |
18 | 1, 17 | eqsstrd 3306 | 1 ⊢ (N ∈ NC → ( Spac ‘N) ⊆ NC ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {cab 2339 ∪ cun 3208 ⊆ wss 3258 {csn 3738 {copab 4623 “ cima 4723 ran crn 4774 ‘cfv 4782 (class class class)co 5526 Clos1 cclos1 5873 NC cncs 6089 2cc2c 6095 ↑c cce 6097 Spac cspac 6274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-2nd 4798 df-ov 5527 df-oprab 5529 df-mpt 5653 df-mpt2 5655 df-txp 5737 df-fix 5741 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-pw1fn 5767 df-fullfun 5769 df-clos1 5874 df-trans 5900 df-sym 5909 df-er 5910 df-ec 5948 df-qs 5952 df-map 6002 df-en 6030 df-ncs 6099 df-nc 6102 df-2c 6105 df-ce 6107 df-spac 6275 |
This theorem is referenced by: spaccl 6287 spacind 6288 nchoicelem4 6293 nchoicelem6 6295 |
Copyright terms: Public domain | W3C validator |