New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > vfinspeqtncv | GIF version |
Description: If the universe is finite, then Spfin is equal to its T raisings and the cardinality of the universe. Theorem X.1.61 of [Rosser] p. 536. (Contributed by SF, 29-Jan-2015.) |
Ref | Expression |
---|---|
vfinspeqtncv | ⊢ (V ∈ Fin → Spfin = ({a ∣ ∃x ∈ Spfin a = Tfin x} ∪ { Ncfin V})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vfinspss 4551 | . 2 ⊢ (V ∈ Fin → Spfin ⊆ ({a ∣ ∃x ∈ Spfin a = Tfin x} ∪ { Ncfin V})) | |
2 | vfinspclt 4552 | . . . . . . 7 ⊢ ((V ∈ Fin ∧ x ∈ Spfin ) → Tfin x ∈ Spfin ) | |
3 | eleq1 2413 | . . . . . . . . 9 ⊢ (a = Tfin x → (a ∈ Spfin ↔ Tfin x ∈ Spfin )) | |
4 | 3 | biimprd 214 | . . . . . . . 8 ⊢ (a = Tfin x → ( Tfin x ∈ Spfin → a ∈ Spfin )) |
5 | 4 | com12 27 | . . . . . . 7 ⊢ ( Tfin x ∈ Spfin → (a = Tfin x → a ∈ Spfin )) |
6 | 2, 5 | syl 15 | . . . . . 6 ⊢ ((V ∈ Fin ∧ x ∈ Spfin ) → (a = Tfin x → a ∈ Spfin )) |
7 | 6 | rexlimdva 2738 | . . . . 5 ⊢ (V ∈ Fin → (∃x ∈ Spfin a = Tfin x → a ∈ Spfin )) |
8 | 7 | abssdv 3340 | . . . 4 ⊢ (V ∈ Fin → {a ∣ ∃x ∈ Spfin a = Tfin x} ⊆ Spfin ) |
9 | ncvspfin 4538 | . . . . 5 ⊢ Ncfin V ∈ Spfin | |
10 | ncfinex 4472 | . . . . . 6 ⊢ Ncfin V ∈ V | |
11 | 10 | snss 3838 | . . . . 5 ⊢ ( Ncfin V ∈ Spfin ↔ { Ncfin V} ⊆ Spfin ) |
12 | 9, 11 | mpbi 199 | . . . 4 ⊢ { Ncfin V} ⊆ Spfin |
13 | 8, 12 | jctir 524 | . . 3 ⊢ (V ∈ Fin → ({a ∣ ∃x ∈ Spfin a = Tfin x} ⊆ Spfin ∧ { Ncfin V} ⊆ Spfin )) |
14 | unss 3437 | . . 3 ⊢ (({a ∣ ∃x ∈ Spfin a = Tfin x} ⊆ Spfin ∧ { Ncfin V} ⊆ Spfin ) ↔ ({a ∣ ∃x ∈ Spfin a = Tfin x} ∪ { Ncfin V}) ⊆ Spfin ) | |
15 | 13, 14 | sylib 188 | . 2 ⊢ (V ∈ Fin → ({a ∣ ∃x ∈ Spfin a = Tfin x} ∪ { Ncfin V}) ⊆ Spfin ) |
16 | 1, 15 | eqssd 3289 | 1 ⊢ (V ∈ Fin → Spfin = ({a ∣ ∃x ∈ Spfin a = Tfin x} ∪ { Ncfin V})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 ∃wrex 2615 Vcvv 2859 ∪ cun 3207 ⊆ wss 3257 {csn 3737 Fin cfin 4376 Ncfin cncfin 4434 Tfin ctfin 4435 Spfin cspfin 4439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-sfin 4446 df-spfin 4447 |
This theorem is referenced by: vfinncsp 4554 |
Copyright terms: Public domain | W3C validator |