New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > vfinspeqtncv | GIF version |
Description: If the universe is finite, then Spfin is equal to its T raisings and the cardinality of the universe. Theorem X.1.61 of [Rosser] p. 536. (Contributed by SF, 29-Jan-2015.) |
Ref | Expression |
---|---|
vfinspeqtncv | ⊢ (V ∈ Fin → Spfin = ({a ∣ ∃x ∈ Spfin a = Tfin x} ∪ { Ncfin V})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vfinspss 4552 | . 2 ⊢ (V ∈ Fin → Spfin ⊆ ({a ∣ ∃x ∈ Spfin a = Tfin x} ∪ { Ncfin V})) | |
2 | vfinspclt 4553 | . . . . . . 7 ⊢ ((V ∈ Fin ∧ x ∈ Spfin ) → Tfin x ∈ Spfin ) | |
3 | eleq1 2413 | . . . . . . . . 9 ⊢ (a = Tfin x → (a ∈ Spfin ↔ Tfin x ∈ Spfin )) | |
4 | 3 | biimprd 214 | . . . . . . . 8 ⊢ (a = Tfin x → ( Tfin x ∈ Spfin → a ∈ Spfin )) |
5 | 4 | com12 27 | . . . . . . 7 ⊢ ( Tfin x ∈ Spfin → (a = Tfin x → a ∈ Spfin )) |
6 | 2, 5 | syl 15 | . . . . . 6 ⊢ ((V ∈ Fin ∧ x ∈ Spfin ) → (a = Tfin x → a ∈ Spfin )) |
7 | 6 | rexlimdva 2739 | . . . . 5 ⊢ (V ∈ Fin → (∃x ∈ Spfin a = Tfin x → a ∈ Spfin )) |
8 | 7 | abssdv 3341 | . . . 4 ⊢ (V ∈ Fin → {a ∣ ∃x ∈ Spfin a = Tfin x} ⊆ Spfin ) |
9 | ncvspfin 4539 | . . . . 5 ⊢ Ncfin V ∈ Spfin | |
10 | ncfinex 4473 | . . . . . 6 ⊢ Ncfin V ∈ V | |
11 | 10 | snss 3839 | . . . . 5 ⊢ ( Ncfin V ∈ Spfin ↔ { Ncfin V} ⊆ Spfin ) |
12 | 9, 11 | mpbi 199 | . . . 4 ⊢ { Ncfin V} ⊆ Spfin |
13 | 8, 12 | jctir 524 | . . 3 ⊢ (V ∈ Fin → ({a ∣ ∃x ∈ Spfin a = Tfin x} ⊆ Spfin ∧ { Ncfin V} ⊆ Spfin )) |
14 | unss 3438 | . . 3 ⊢ (({a ∣ ∃x ∈ Spfin a = Tfin x} ⊆ Spfin ∧ { Ncfin V} ⊆ Spfin ) ↔ ({a ∣ ∃x ∈ Spfin a = Tfin x} ∪ { Ncfin V}) ⊆ Spfin ) | |
15 | 13, 14 | sylib 188 | . 2 ⊢ (V ∈ Fin → ({a ∣ ∃x ∈ Spfin a = Tfin x} ∪ { Ncfin V}) ⊆ Spfin ) |
16 | 1, 15 | eqssd 3290 | 1 ⊢ (V ∈ Fin → Spfin = ({a ∣ ∃x ∈ Spfin a = Tfin x} ∪ { Ncfin V})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 ∃wrex 2616 Vcvv 2860 ∪ cun 3208 ⊆ wss 3258 {csn 3738 Fin cfin 4377 Ncfin cncfin 4435 Tfin ctfin 4436 Spfin cspfin 4440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-sfin 4447 df-spfin 4448 |
This theorem is referenced by: vfinncsp 4555 |
Copyright terms: Public domain | W3C validator |