| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > rmoeq1f | GIF version | ||
| Description: Equality theorem for restricted uniqueness quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| Ref | Expression |
|---|---|
| raleq1f.1 | ⊢ ℲxA |
| raleq1f.2 | ⊢ ℲxB |
| Ref | Expression |
|---|---|
| rmoeq1f | ⊢ (A = B → (∃*x ∈ A φ ↔ ∃*x ∈ B φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1f.1 | . . . 4 ⊢ ℲxA | |
| 2 | raleq1f.2 | . . . 4 ⊢ ℲxB | |
| 3 | 1, 2 | nfeq 2497 | . . 3 ⊢ Ⅎx A = B |
| 4 | eleq2 2414 | . . . 4 ⊢ (A = B → (x ∈ A ↔ x ∈ B)) | |
| 5 | 4 | anbi1d 685 | . . 3 ⊢ (A = B → ((x ∈ A ∧ φ) ↔ (x ∈ B ∧ φ))) |
| 6 | 3, 5 | mobid 2238 | . 2 ⊢ (A = B → (∃*x(x ∈ A ∧ φ) ↔ ∃*x(x ∈ B ∧ φ))) |
| 7 | df-rmo 2623 | . 2 ⊢ (∃*x ∈ A φ ↔ ∃*x(x ∈ A ∧ φ)) | |
| 8 | df-rmo 2623 | . 2 ⊢ (∃*x ∈ B φ ↔ ∃*x(x ∈ B ∧ φ)) | |
| 9 | 6, 7, 8 | 3bitr4g 279 | 1 ⊢ (A = B → (∃*x ∈ A φ ↔ ∃*x ∈ B φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∃*wmo 2205 Ⅎwnfc 2477 ∃*wrmo 2618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rmo 2623 |
| This theorem is referenced by: rmoeq1 2811 |
| Copyright terms: Public domain | W3C validator |