NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mo4 GIF version

Theorem mo4 2237
Description: "At most one" expressed using implicit substitution. (Contributed by NM, 26-Jul-1995.)
Hypothesis
Ref Expression
mo4.1 (x = y → (φψ))
Assertion
Ref Expression
mo4 (∃*xφxy((φ ψ) → x = y))
Distinct variable groups:   x,y   φ,y   ψ,x
Allowed substitution hints:   φ(x)   ψ(y)

Proof of Theorem mo4
StepHypRef Expression
1 nfv 1619 . 2 xψ
2 mo4.1 . 2 (x = y → (φψ))
31, 2mo4f 2236 1 (∃*xφxy((φ ψ) → x = y))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wal 1540  ∃*wmo 2205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209
This theorem is referenced by:  eu4  2243  rmo4  3030  dffun3  5121  dff13  5472  caovmo  5646  xpassen  6058  enpw1  6063
  Copyright terms: Public domain W3C validator