NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfiotad GIF version

Theorem nfiotad 4343
Description: Deduction version of nfiota 4344. (Contributed by NM, 18-Feb-2013.)
Hypotheses
Ref Expression
nfiotad.1 yφ
nfiotad.2 (φ → Ⅎxψ)
Assertion
Ref Expression
nfiotad (φx(℩yψ))

Proof of Theorem nfiotad
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 dfiota2 4341 . 2 (℩yψ) = {z y(ψy = z)}
2 nfv 1619 . . . 4 zφ
3 nfiotad.1 . . . . 5 yφ
4 nfiotad.2 . . . . . . 7 (φ → Ⅎxψ)
54adantr 451 . . . . . 6 ((φ ¬ x x = y) → Ⅎxψ)
6 nfcvf 2512 . . . . . . . 8 x x = yxy)
76adantl 452 . . . . . . 7 ((φ ¬ x x = y) → xy)
8 nfcvd 2491 . . . . . . 7 ((φ ¬ x x = y) → xz)
97, 8nfeqd 2504 . . . . . 6 ((φ ¬ x x = y) → Ⅎx y = z)
105, 9nfbid 1832 . . . . 5 ((φ ¬ x x = y) → Ⅎx(ψy = z))
113, 10nfald2 1972 . . . 4 (φ → Ⅎxy(ψy = z))
122, 11nfabd 2509 . . 3 (φx{z y(ψy = z)})
1312nfunid 3899 . 2 (φx{z y(ψy = z)})
141, 13nfcxfrd 2488 1 (φx(℩yψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358  wal 1540  wnf 1544   = wceq 1642  {cab 2339  wnfc 2477  cuni 3892  cio 4338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rex 2621  df-sn 3742  df-uni 3893  df-iota 4340
This theorem is referenced by:  nfiota  4344
  Copyright terms: Public domain W3C validator