| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nfiotad | GIF version | ||
| Description: Deduction version of nfiota 4344. (Contributed by NM, 18-Feb-2013.) |
| Ref | Expression |
|---|---|
| nfiotad.1 | ⊢ Ⅎyφ |
| nfiotad.2 | ⊢ (φ → Ⅎxψ) |
| Ref | Expression |
|---|---|
| nfiotad | ⊢ (φ → Ⅎx(℩yψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiota2 4341 | . 2 ⊢ (℩yψ) = ∪{z ∣ ∀y(ψ ↔ y = z)} | |
| 2 | nfv 1619 | . . . 4 ⊢ Ⅎzφ | |
| 3 | nfiotad.1 | . . . . 5 ⊢ Ⅎyφ | |
| 4 | nfiotad.2 | . . . . . . 7 ⊢ (φ → Ⅎxψ) | |
| 5 | 4 | adantr 451 | . . . . . 6 ⊢ ((φ ∧ ¬ ∀x x = y) → Ⅎxψ) |
| 6 | nfcvf 2512 | . . . . . . . 8 ⊢ (¬ ∀x x = y → Ⅎxy) | |
| 7 | 6 | adantl 452 | . . . . . . 7 ⊢ ((φ ∧ ¬ ∀x x = y) → Ⅎxy) |
| 8 | nfcvd 2491 | . . . . . . 7 ⊢ ((φ ∧ ¬ ∀x x = y) → Ⅎxz) | |
| 9 | 7, 8 | nfeqd 2504 | . . . . . 6 ⊢ ((φ ∧ ¬ ∀x x = y) → Ⅎx y = z) |
| 10 | 5, 9 | nfbid 1832 | . . . . 5 ⊢ ((φ ∧ ¬ ∀x x = y) → Ⅎx(ψ ↔ y = z)) |
| 11 | 3, 10 | nfald2 1972 | . . . 4 ⊢ (φ → Ⅎx∀y(ψ ↔ y = z)) |
| 12 | 2, 11 | nfabd 2509 | . . 3 ⊢ (φ → Ⅎx{z ∣ ∀y(ψ ↔ y = z)}) |
| 13 | 12 | nfunid 3899 | . 2 ⊢ (φ → Ⅎx∪{z ∣ ∀y(ψ ↔ y = z)}) |
| 14 | 1, 13 | nfcxfrd 2488 | 1 ⊢ (φ → Ⅎx(℩yψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 Ⅎwnf 1544 = wceq 1642 {cab 2339 Ⅎwnfc 2477 ∪cuni 3892 ℩cio 4338 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-sn 3742 df-uni 3893 df-iota 4340 |
| This theorem is referenced by: nfiota 4344 |
| Copyright terms: Public domain | W3C validator |