New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfrald | GIF version |
Description: Deduction version of nfral 2668. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfrald.2 | ⊢ Ⅎyφ |
nfrald.3 | ⊢ (φ → ℲxA) |
nfrald.4 | ⊢ (φ → Ⅎxψ) |
Ref | Expression |
---|---|
nfrald | ⊢ (φ → Ⅎx∀y ∈ A ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2620 | . 2 ⊢ (∀y ∈ A ψ ↔ ∀y(y ∈ A → ψ)) | |
2 | nfrald.2 | . . 3 ⊢ Ⅎyφ | |
3 | nfcvf 2512 | . . . . . 6 ⊢ (¬ ∀x x = y → Ⅎxy) | |
4 | 3 | adantl 452 | . . . . 5 ⊢ ((φ ∧ ¬ ∀x x = y) → Ⅎxy) |
5 | nfrald.3 | . . . . . 6 ⊢ (φ → ℲxA) | |
6 | 5 | adantr 451 | . . . . 5 ⊢ ((φ ∧ ¬ ∀x x = y) → ℲxA) |
7 | 4, 6 | nfeld 2505 | . . . 4 ⊢ ((φ ∧ ¬ ∀x x = y) → Ⅎx y ∈ A) |
8 | nfrald.4 | . . . . 5 ⊢ (φ → Ⅎxψ) | |
9 | 8 | adantr 451 | . . . 4 ⊢ ((φ ∧ ¬ ∀x x = y) → Ⅎxψ) |
10 | 7, 9 | nfimd 1808 | . . 3 ⊢ ((φ ∧ ¬ ∀x x = y) → Ⅎx(y ∈ A → ψ)) |
11 | 2, 10 | nfald2 1972 | . 2 ⊢ (φ → Ⅎx∀y(y ∈ A → ψ)) |
12 | 1, 11 | nfxfrd 1571 | 1 ⊢ (φ → Ⅎx∀y ∈ A ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 ∀wal 1540 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 Ⅎwnfc 2477 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 |
This theorem is referenced by: nfrexd 2667 nfral 2668 |
Copyright terms: Public domain | W3C validator |