NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfunid GIF version

Theorem nfunid 3899
Description: Deduction version of nfuni 3898. (Contributed by NM, 18-Feb-2013.)
Hypothesis
Ref Expression
nfunid.3 (φxA)
Assertion
Ref Expression
nfunid (φxA)

Proof of Theorem nfunid
Dummy variables y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfuni2 3894 . 2 A = {y z A y z}
2 nfv 1619 . . 3 yφ
3 nfv 1619 . . . 4 zφ
4 nfunid.3 . . . 4 (φxA)
5 nfvd 1620 . . . 4 (φ → Ⅎx y z)
63, 4, 5nfrexd 2667 . . 3 (φ → Ⅎxz A y z)
72, 6nfabd 2509 . 2 (φx{y z A y z})
81, 7nfcxfrd 2488 1 (φxA)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wcel 1710  {cab 2339  wnfc 2477  wrex 2616  cuni 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rex 2621  df-uni 3893
This theorem is referenced by:  dfnfc2  3910  nfiotad  4343
  Copyright terms: Public domain W3C validator