NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dblcompl GIF version

Theorem dblcompl 3228
Description: Double complement law. (Contributed by SF, 10-Jan-2015.)
Assertion
Ref Expression
dblcompl ∼ ∼ A = A

Proof of Theorem dblcompl
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 vex 2863 . . . 4 x V
21elcompl 3226 . . 3 (x ∼ ∼ A ↔ ¬ x A)
31elcompl 3226 . . . 4 (x A ↔ ¬ x A)
43con2bii 322 . . 3 (x A ↔ ¬ x A)
52, 4bitr4i 243 . 2 (x ∼ ∼ Ax A)
65eqriv 2350 1 ∼ ∼ A = A
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1642   wcel 1710  ccompl 3206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213
This theorem is referenced by:  compleqb  3544  dfin5  3546  dfun4  3547  iunin  3548  iinun  3549  compl0  4072  sbthlem1  6204
  Copyright terms: Public domain W3C validator