New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfoprab3 GIF version

Theorem nfoprab3 5548
 Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 22-Aug-2013.)
Assertion
Ref Expression
nfoprab3 z{x, y, z φ}

Proof of Theorem nfoprab3
Dummy variable w is distinct from all other variables.
StepHypRef Expression
1 df-oprab 5528 . 2 {x, y, z φ} = {w xyz(w = x, y, z φ)}
2 nfe1 1732 . . . . 5 zz(w = x, y, z φ)
32nfex 1843 . . . 4 zyz(w = x, y, z φ)
43nfex 1843 . . 3 zxyz(w = x, y, z φ)
54nfab 2493 . 2 z{w xyz(w = x, y, z φ)}
61, 5nfcxfr 2486 1 z{x, y, z φ}
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 358  ∃wex 1541   = wceq 1642  {cab 2339  Ⅎwnfc 2476  ⟨cop 4561  {coprab 5527 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-oprab 5528 This theorem is referenced by:  ov3  5599
 Copyright terms: Public domain W3C validator