NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfoprab3 GIF version

Theorem nfoprab3 5549
Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 22-Aug-2013.)
Assertion
Ref Expression
nfoprab3 z{x, y, z φ}

Proof of Theorem nfoprab3
Dummy variable w is distinct from all other variables.
StepHypRef Expression
1 df-oprab 5529 . 2 {x, y, z φ} = {w xyz(w = x, y, z φ)}
2 nfe1 1732 . . . . 5 zz(w = x, y, z φ)
32nfex 1843 . . . 4 zyz(w = x, y, z φ)
43nfex 1843 . . 3 zxyz(w = x, y, z φ)
54nfab 2494 . 2 z{w xyz(w = x, y, z φ)}
61, 5nfcxfr 2487 1 z{x, y, z φ}
Colors of variables: wff setvar class
Syntax hints:   wa 358  wex 1541   = wceq 1642  {cab 2339  wnfc 2477  cop 4562  {coprab 5528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-oprab 5529
This theorem is referenced by:  ov3  5600
  Copyright terms: Public domain W3C validator