NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfpw GIF version

Theorem nfpw 3734
Description: Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
nfpw.1 xA
Assertion
Ref Expression
nfpw xA

Proof of Theorem nfpw
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 df-pw 3725 . 2 A = {y y A}
2 nfcv 2490 . . . 4 xy
3 nfpw.1 . . . 4 xA
42, 3nfss 3267 . . 3 x y A
54nfab 2494 . 2 x{y y A}
61, 5nfcxfr 2487 1 xA
Colors of variables: wff setvar class
Syntax hints:  {cab 2339  wnfc 2477   wss 3258  cpw 3723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-pw 3725
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator