New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfpw | GIF version |
Description: Bound-variable hypothesis builder for power class. (Contributed by NM, 28-Oct-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
nfpw.1 | ⊢ ℲxA |
Ref | Expression |
---|---|
nfpw | ⊢ Ⅎx℘A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pw 3725 | . 2 ⊢ ℘A = {y ∣ y ⊆ A} | |
2 | nfcv 2490 | . . . 4 ⊢ Ⅎxy | |
3 | nfpw.1 | . . . 4 ⊢ ℲxA | |
4 | 2, 3 | nfss 3267 | . . 3 ⊢ Ⅎx y ⊆ A |
5 | 4 | nfab 2494 | . 2 ⊢ Ⅎx{y ∣ y ⊆ A} |
6 | 1, 5 | nfcxfr 2487 | 1 ⊢ Ⅎx℘A |
Colors of variables: wff setvar class |
Syntax hints: {cab 2339 Ⅎwnfc 2477 ⊆ wss 3258 ℘cpw 3723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-pw 3725 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |