New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfss | GIF version |
Description: If x is not free in A and B, it is not free in A ⊆ B. (Contributed by NM, 27-Dec-1996.) |
Ref | Expression |
---|---|
dfss2f.1 | ⊢ ℲxA |
dfss2f.2 | ⊢ ℲxB |
Ref | Expression |
---|---|
nfss | ⊢ Ⅎx A ⊆ B |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2f.1 | . . 3 ⊢ ℲxA | |
2 | dfss2f.2 | . . 3 ⊢ ℲxB | |
3 | 1, 2 | dfss3f 3265 | . 2 ⊢ (A ⊆ B ↔ ∀x ∈ A x ∈ B) |
4 | nfra1 2664 | . 2 ⊢ Ⅎx∀x ∈ A x ∈ B | |
5 | 3, 4 | nfxfr 1570 | 1 ⊢ Ⅎx A ⊆ B |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1544 ∈ wcel 1710 Ⅎwnfc 2476 ∀wral 2614 ⊆ wss 3257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ral 2619 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 |
This theorem is referenced by: nfpw 3733 ssiun2s 4010 ssopab2b 4713 nffun 5130 nff 5221 fvmptss 5705 |
Copyright terms: Public domain | W3C validator |