NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfrab GIF version

Theorem nfrab 2793
Description: A variable not free in a wff remains so in a restricted class abstraction. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 9-Oct-2016.)
Hypotheses
Ref Expression
nfrab.1 xφ
nfrab.2 xA
Assertion
Ref Expression
nfrab x{y A φ}

Proof of Theorem nfrab
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 df-rab 2624 . 2 {y A φ} = {y (y A φ)}
2 nftru 1554 . . . 4 y
3 nfrab.2 . . . . . . . 8 xA
43nfcri 2484 . . . . . . 7 x z A
5 eleq1 2413 . . . . . . 7 (z = y → (z Ay A))
64, 5dvelimnf 2017 . . . . . 6 x x = y → Ⅎx y A)
7 nfrab.1 . . . . . . 7 xφ
87a1i 10 . . . . . 6 x x = y → Ⅎxφ)
96, 8nfand 1822 . . . . 5 x x = y → Ⅎx(y A φ))
109adantl 452 . . . 4 (( ⊤ ¬ x x = y) → Ⅎx(y A φ))
112, 10nfabd2 2508 . . 3 ( ⊤ → x{y (y A φ)})
1211trud 1323 . 2 x{y (y A φ)}
131, 12nfcxfr 2487 1 x{y A φ}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   wa 358  wtru 1316  wal 1540  wnf 1544   = wceq 1642   wcel 1710  {cab 2339  wnfc 2477  {crab 2619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rab 2624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator