New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfrab | GIF version |
Description: A variable not free in a wff remains so in a restricted class abstraction. (Contributed by NM, 13-Oct-2003.) (Revised by Mario Carneiro, 9-Oct-2016.) |
Ref | Expression |
---|---|
nfrab.1 | ⊢ Ⅎxφ |
nfrab.2 | ⊢ ℲxA |
Ref | Expression |
---|---|
nfrab | ⊢ Ⅎx{y ∈ A ∣ φ} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2624 | . 2 ⊢ {y ∈ A ∣ φ} = {y ∣ (y ∈ A ∧ φ)} | |
2 | nftru 1554 | . . . 4 ⊢ Ⅎy ⊤ | |
3 | nfrab.2 | . . . . . . . 8 ⊢ ℲxA | |
4 | 3 | nfcri 2484 | . . . . . . 7 ⊢ Ⅎx z ∈ A |
5 | eleq1 2413 | . . . . . . 7 ⊢ (z = y → (z ∈ A ↔ y ∈ A)) | |
6 | 4, 5 | dvelimnf 2017 | . . . . . 6 ⊢ (¬ ∀x x = y → Ⅎx y ∈ A) |
7 | nfrab.1 | . . . . . . 7 ⊢ Ⅎxφ | |
8 | 7 | a1i 10 | . . . . . 6 ⊢ (¬ ∀x x = y → Ⅎxφ) |
9 | 6, 8 | nfand 1822 | . . . . 5 ⊢ (¬ ∀x x = y → Ⅎx(y ∈ A ∧ φ)) |
10 | 9 | adantl 452 | . . . 4 ⊢ (( ⊤ ∧ ¬ ∀x x = y) → Ⅎx(y ∈ A ∧ φ)) |
11 | 2, 10 | nfabd2 2508 | . . 3 ⊢ ( ⊤ → Ⅎx{y ∣ (y ∈ A ∧ φ)}) |
12 | 11 | trud 1323 | . 2 ⊢ Ⅎx{y ∣ (y ∈ A ∧ φ)} |
13 | 1, 12 | nfcxfr 2487 | 1 ⊢ Ⅎx{y ∈ A ∣ φ} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 358 ⊤ wtru 1316 ∀wal 1540 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 {cab 2339 Ⅎwnfc 2477 {crab 2619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rab 2624 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |