New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfral | GIF version |
Description: Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfral.1 | ⊢ ℲxA |
nfral.2 | ⊢ Ⅎxφ |
Ref | Expression |
---|---|
nfral | ⊢ Ⅎx∀y ∈ A φ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1554 | . . 3 ⊢ Ⅎy ⊤ | |
2 | nfral.1 | . . . 4 ⊢ ℲxA | |
3 | 2 | a1i 10 | . . 3 ⊢ ( ⊤ → ℲxA) |
4 | nfral.2 | . . . 4 ⊢ Ⅎxφ | |
5 | 4 | a1i 10 | . . 3 ⊢ ( ⊤ → Ⅎxφ) |
6 | 1, 3, 5 | nfrald 2666 | . 2 ⊢ ( ⊤ → Ⅎx∀y ∈ A φ) |
7 | 6 | trud 1323 | 1 ⊢ Ⅎx∀y ∈ A φ |
Colors of variables: wff setvar class |
Syntax hints: ⊤ wtru 1316 Ⅎwnf 1544 Ⅎwnfc 2477 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 |
This theorem is referenced by: nfra2 2669 nfrex 2670 rspc2 2961 sbcralt 3119 sbcralg 3121 raaan 3658 nfint 3937 nfiin 3997 ralxpf 4828 fun11iun 5306 dff13f 5473 nfiso 5488 mpt2eq123 5662 fmpt2x 5731 |
Copyright terms: Public domain | W3C validator |