NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfrexd GIF version

Theorem nfrexd 2667
Description: Deduction version of nfrex 2670. (Contributed by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfrald.2 yφ
nfrald.3 (φxA)
nfrald.4 (φ → Ⅎxψ)
Assertion
Ref Expression
nfrexd (φ → Ⅎxy A ψ)

Proof of Theorem nfrexd
StepHypRef Expression
1 dfrex2 2628 . 2 (y A ψ ↔ ¬ y A ¬ ψ)
2 nfrald.2 . . . 4 yφ
3 nfrald.3 . . . 4 (φxA)
4 nfrald.4 . . . . 5 (φ → Ⅎxψ)
54nfnd 1791 . . . 4 (φ → Ⅎx ¬ ψ)
62, 3, 5nfrald 2666 . . 3 (φ → Ⅎxy A ¬ ψ)
76nfnd 1791 . 2 (φ → Ⅎx ¬ y A ¬ ψ)
81, 7nfxfrd 1571 1 (φ → Ⅎxy A ψ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wnf 1544  wnfc 2477  wral 2615  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rex 2621
This theorem is referenced by:  nfunid  3899
  Copyright terms: Public domain W3C validator