New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfrexd | GIF version |
Description: Deduction version of nfrex 2670. (Contributed by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfrald.2 | ⊢ Ⅎyφ |
nfrald.3 | ⊢ (φ → ℲxA) |
nfrald.4 | ⊢ (φ → Ⅎxψ) |
Ref | Expression |
---|---|
nfrexd | ⊢ (φ → Ⅎx∃y ∈ A ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrex2 2628 | . 2 ⊢ (∃y ∈ A ψ ↔ ¬ ∀y ∈ A ¬ ψ) | |
2 | nfrald.2 | . . . 4 ⊢ Ⅎyφ | |
3 | nfrald.3 | . . . 4 ⊢ (φ → ℲxA) | |
4 | nfrald.4 | . . . . 5 ⊢ (φ → Ⅎxψ) | |
5 | 4 | nfnd 1791 | . . . 4 ⊢ (φ → Ⅎx ¬ ψ) |
6 | 2, 3, 5 | nfrald 2666 | . . 3 ⊢ (φ → Ⅎx∀y ∈ A ¬ ψ) |
7 | 6 | nfnd 1791 | . 2 ⊢ (φ → Ⅎx ¬ ∀y ∈ A ¬ ψ) |
8 | 1, 7 | nfxfrd 1571 | 1 ⊢ (φ → Ⅎx∃y ∈ A ψ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1544 Ⅎwnfc 2477 ∀wral 2615 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 |
This theorem is referenced by: nfunid 3899 |
Copyright terms: Public domain | W3C validator |