| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nfre1 | GIF version | ||
| Description: x is not free in ∃x ∈ Aφ. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfre1 | ⊢ Ⅎx∃x ∈ A φ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2621 | . 2 ⊢ (∃x ∈ A φ ↔ ∃x(x ∈ A ∧ φ)) | |
| 2 | nfe1 1732 | . 2 ⊢ Ⅎx∃x(x ∈ A ∧ φ) | |
| 3 | 1, 2 | nfxfr 1570 | 1 ⊢ Ⅎx∃x ∈ A φ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 358 ∃wex 1541 Ⅎwnf 1544 ∈ wcel 1710 ∃wrex 2616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-6 1729 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 df-rex 2621 |
| This theorem is referenced by: 2rmorex 3041 nfiu1 3998 fun11iun 5306 |
| Copyright terms: Public domain | W3C validator |