NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfre1 GIF version

Theorem nfre1 2671
Description: x is not free in x Aφ. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.)
Assertion
Ref Expression
nfre1 xx A φ

Proof of Theorem nfre1
StepHypRef Expression
1 df-rex 2621 . 2 (x A φx(x A φ))
2 nfe1 1732 . 2 xx(x A φ)
31, 2nfxfr 1570 1 xx A φ
Colors of variables: wff setvar class
Syntax hints:   wa 358  wex 1541  wnf 1544   wcel 1710  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-6 1729
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545  df-rex 2621
This theorem is referenced by:  2rmorex  3041  nfiu1  3998  fun11iun  5306
  Copyright terms: Public domain W3C validator