| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 2rmorex | GIF version | ||
| Description: Double restricted quantification with "at most one," analogous to 2moex 2275. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| Ref | Expression |
|---|---|
| 2rmorex | ⊢ (∃*x ∈ A ∃y ∈ B φ → ∀y ∈ B ∃*x ∈ A φ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2490 | . . 3 ⊢ ℲyA | |
| 2 | nfre1 2671 | . . 3 ⊢ Ⅎy∃y ∈ B φ | |
| 3 | 1, 2 | nfrmo 2787 | . 2 ⊢ Ⅎy∃*x ∈ A ∃y ∈ B φ |
| 4 | rspe 2676 | . . . . . 6 ⊢ ((y ∈ B ∧ φ) → ∃y ∈ B φ) | |
| 5 | 4 | ex 423 | . . . . 5 ⊢ (y ∈ B → (φ → ∃y ∈ B φ)) |
| 6 | 5 | ralrimivw 2699 | . . . 4 ⊢ (y ∈ B → ∀x ∈ A (φ → ∃y ∈ B φ)) |
| 7 | rmoim 3036 | . . . 4 ⊢ (∀x ∈ A (φ → ∃y ∈ B φ) → (∃*x ∈ A ∃y ∈ B φ → ∃*x ∈ A φ)) | |
| 8 | 6, 7 | syl 15 | . . 3 ⊢ (y ∈ B → (∃*x ∈ A ∃y ∈ B φ → ∃*x ∈ A φ)) |
| 9 | 8 | com12 27 | . 2 ⊢ (∃*x ∈ A ∃y ∈ B φ → (y ∈ B → ∃*x ∈ A φ)) |
| 10 | 3, 9 | ralrimi 2696 | 1 ⊢ (∃*x ∈ A ∃y ∈ B φ → ∀y ∈ B ∃*x ∈ A φ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 1710 ∀wral 2615 ∃wrex 2616 ∃*wrmo 2618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-rmo 2623 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |