| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nfiu1 | GIF version | ||
| Description: Bound-variable hypothesis builder for indexed union. (Contributed by NM, 12-Oct-2003.) |
| Ref | Expression |
|---|---|
| nfiu1 | ⊢ Ⅎx∪x ∈ A B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iun 3972 | . 2 ⊢ ∪x ∈ A B = {y ∣ ∃x ∈ A y ∈ B} | |
| 2 | nfre1 2671 | . . 3 ⊢ Ⅎx∃x ∈ A y ∈ B | |
| 3 | 2 | nfab 2494 | . 2 ⊢ Ⅎx{y ∣ ∃x ∈ A y ∈ B} |
| 4 | 1, 3 | nfcxfr 2487 | 1 ⊢ Ⅎx∪x ∈ A B |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 1710 {cab 2339 Ⅎwnfc 2477 ∃wrex 2616 ∪ciun 3970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-iun 3972 |
| This theorem is referenced by: ssiun2s 4011 eliunxp 4822 opeliunxp2 4823 |
| Copyright terms: Public domain | W3C validator |