Proof of Theorem r3al
Step | Hyp | Ref
| Expression |
1 | | df-ral 2620 |
. 2
⊢ (∀x ∈ A ∀y∀z((y ∈ B ∧ z ∈ C) → φ)
↔ ∀x(x ∈ A →
∀y∀z((y ∈ B ∧ z ∈ C) → φ))) |
2 | | r2al 2652 |
. . 3
⊢ (∀y ∈ B ∀z ∈ C φ ↔ ∀y∀z((y ∈ B ∧ z ∈ C) → φ)) |
3 | 2 | ralbii 2639 |
. 2
⊢ (∀x ∈ A ∀y ∈ B ∀z ∈ C φ ↔ ∀x ∈ A ∀y∀z((y ∈ B ∧ z ∈ C) → φ)) |
4 | | 3anass 938 |
. . . . . . . . 9
⊢ ((x ∈ A ∧ y ∈ B ∧ z ∈ C) ↔ (x
∈ A ∧ (y ∈ B ∧ z ∈ C))) |
5 | 4 | imbi1i 315 |
. . . . . . . 8
⊢ (((x ∈ A ∧ y ∈ B ∧ z ∈ C) → φ)
↔ ((x ∈ A ∧ (y ∈ B ∧ z ∈ C)) →
φ)) |
6 | | impexp 433 |
. . . . . . . 8
⊢ (((x ∈ A ∧ (y ∈ B ∧ z ∈ C)) → φ) ↔ (x ∈ A → ((y
∈ B ∧ z ∈ C) →
φ))) |
7 | 5, 6 | bitri 240 |
. . . . . . 7
⊢ (((x ∈ A ∧ y ∈ B ∧ z ∈ C) → φ)
↔ (x ∈ A →
((y ∈
B ∧
z ∈
C) → φ))) |
8 | 7 | albii 1566 |
. . . . . 6
⊢ (∀z((x ∈ A ∧ y ∈ B ∧ z ∈ C) → φ)
↔ ∀z(x ∈ A →
((y ∈
B ∧
z ∈
C) → φ))) |
9 | | 19.21v 1890 |
. . . . . 6
⊢ (∀z(x ∈ A → ((y
∈ B ∧ z ∈ C) →
φ)) ↔ (x ∈ A → ∀z((y ∈ B ∧ z ∈ C) → φ))) |
10 | 8, 9 | bitri 240 |
. . . . 5
⊢ (∀z((x ∈ A ∧ y ∈ B ∧ z ∈ C) → φ)
↔ (x ∈ A →
∀z((y ∈ B ∧ z ∈ C) →
φ))) |
11 | 10 | albii 1566 |
. . . 4
⊢ (∀y∀z((x ∈ A ∧ y ∈ B ∧ z ∈ C) → φ)
↔ ∀y(x ∈ A →
∀z((y ∈ B ∧ z ∈ C) →
φ))) |
12 | | 19.21v 1890 |
. . . 4
⊢ (∀y(x ∈ A → ∀z((y ∈ B ∧ z ∈ C) → φ)) ↔ (x ∈ A → ∀y∀z((y ∈ B ∧ z ∈ C) → φ))) |
13 | 11, 12 | bitri 240 |
. . 3
⊢ (∀y∀z((x ∈ A ∧ y ∈ B ∧ z ∈ C) → φ)
↔ (x ∈ A →
∀y∀z((y ∈ B ∧ z ∈ C) → φ))) |
14 | 13 | albii 1566 |
. 2
⊢ (∀x∀y∀z((x ∈ A ∧ y ∈ B ∧ z ∈ C) → φ)
↔ ∀x(x ∈ A →
∀y∀z((y ∈ B ∧ z ∈ C) → φ))) |
15 | 1, 3, 14 | 3bitr4i 268 |
1
⊢ (∀x ∈ A ∀y ∈ B ∀z ∈ C φ ↔ ∀x∀y∀z((x ∈ A ∧ y ∈ B ∧ z ∈ C) → φ)) |