New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > inss1 | GIF version |
Description: The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
inss1 | ⊢ (A ∩ B) ⊆ A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3220 | . . 3 ⊢ (x ∈ (A ∩ B) ↔ (x ∈ A ∧ x ∈ B)) | |
2 | 1 | simplbi 446 | . 2 ⊢ (x ∈ (A ∩ B) → x ∈ A) |
3 | 2 | ssriv 3278 | 1 ⊢ (A ∩ B) ⊆ A |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 ∩ cin 3209 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: inss2 3477 ssinss1 3484 unabs 3486 nssinpss 3488 dfin4 3496 inv1 3578 disjdif 3623 uniintsn 3964 pw1sspw 4172 inxpk 4278 cokrelk 4285 cnvkexg 4287 ssetkex 4295 sikexg 4297 ins2kexg 4306 ins3kexg 4307 dfidk2 4314 peano5 4410 phialllem2 4618 resss 4989 funin 5164 funimass2 5171 fnresin1 5198 fnres 5200 isoini2 5499 clos1induct 5881 erdisj 5973 sbthlem1 6204 |
Copyright terms: Public domain | W3C validator |