New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pssn2lp | GIF version |
Description: Proper subclass has no 2-cycle loops. Compare Theorem 8 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
pssn2lp | ⊢ ¬ (A ⊊ B ∧ B ⊊ A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpss3 3355 | . . . 4 ⊢ (A ⊊ B ↔ (A ⊆ B ∧ ¬ B ⊆ A)) | |
2 | 1 | simprbi 450 | . . 3 ⊢ (A ⊊ B → ¬ B ⊆ A) |
3 | pssss 3364 | . . 3 ⊢ (B ⊊ A → B ⊆ A) | |
4 | 2, 3 | nsyl 113 | . 2 ⊢ (A ⊊ B → ¬ B ⊊ A) |
5 | imnan 411 | . 2 ⊢ ((A ⊊ B → ¬ B ⊊ A) ↔ ¬ (A ⊊ B ∧ B ⊊ A)) | |
6 | 4, 5 | mpbi 199 | 1 ⊢ ¬ (A ⊊ B ∧ B ⊊ A) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 ⊆ wss 3257 ⊊ wpss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 df-pss 3261 |
This theorem is referenced by: psstr 3373 |
Copyright terms: Public domain | W3C validator |