Step | Hyp | Ref
| Expression |
1 | | el1c 4140 |
. . . . . . . . 9
⊢ (m ∈
1c ↔ ∃n m = {n}) |
2 | | vex 2863 |
. . . . . . . . . . . . 13
⊢ n ∈
V |
3 | 2 | snid 3761 |
. . . . . . . . . . . 12
⊢ n ∈ {n} |
4 | | n0i 3556 |
. . . . . . . . . . . 12
⊢ (n ∈ {n} → ¬ {n} = ∅) |
5 | 3, 4 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ¬ {n} = ∅ |
6 | | eqeq1 2359 |
. . . . . . . . . . 11
⊢ (m = {n} →
(m = ∅
↔ {n} = ∅)) |
7 | 5, 6 | mtbiri 294 |
. . . . . . . . . 10
⊢ (m = {n} →
¬ m = ∅) |
8 | 7 | exlimiv 1634 |
. . . . . . . . 9
⊢ (∃n m = {n} →
¬ m = ∅) |
9 | 1, 8 | sylbi 187 |
. . . . . . . 8
⊢ (m ∈
1c → ¬ m = ∅) |
10 | | simpr 447 |
. . . . . . . 8
⊢ ((n = ∅ ∧ m = ∅) → m =
∅) |
11 | 9, 10 | nsyl 113 |
. . . . . . 7
⊢ (m ∈
1c → ¬ (n =
∅ ∧
m = ∅)) |
12 | | un00 3587 |
. . . . . . . . 9
⊢ ((n = ∅ ∧ m = ∅) ↔ (n
∪ m) = ∅) |
13 | | eqcom 2355 |
. . . . . . . . 9
⊢ ((n ∪ m) =
∅ ↔ ∅ = (n ∪
m)) |
14 | 12, 13 | bitri 240 |
. . . . . . . 8
⊢ ((n = ∅ ∧ m = ∅) ↔ ∅ =
(n ∪ m)) |
15 | 14 | notbii 287 |
. . . . . . 7
⊢ (¬ (n = ∅ ∧ m = ∅) ↔ ¬ ∅ = (n ∪
m)) |
16 | 11, 15 | sylib 188 |
. . . . . 6
⊢ (m ∈
1c → ¬ ∅ =
(n ∪ m)) |
17 | | simpr 447 |
. . . . . 6
⊢ (((n ∩ m) =
∅ ∧ ∅ = (n ∪
m)) → ∅ = (n ∪
m)) |
18 | 16, 17 | nsyl 113 |
. . . . 5
⊢ (m ∈
1c → ¬ ((n ∩
m) = ∅
∧ ∅ =
(n ∪ m))) |
19 | 18 | nrex 2717 |
. . . 4
⊢ ¬ ∃m ∈ 1c ((n ∩ m) =
∅ ∧ ∅ = (n ∪
m)) |
20 | 19 | a1i 10 |
. . 3
⊢ (n ∈ A → ¬ ∃m ∈ 1c ((n ∩ m) =
∅ ∧ ∅ = (n ∪
m))) |
21 | 20 | nrex 2717 |
. 2
⊢ ¬ ∃n ∈ A ∃m ∈ 1c ((n ∩ m) =
∅ ∧ ∅ = (n ∪
m)) |
22 | | eladdc 4399 |
. 2
⊢ (∅ ∈ (A +c 1c) ↔
∃n ∈ A ∃m ∈ 1c ((n ∩ m) =
∅ ∧ ∅ = (n ∪
m))) |
23 | 21, 22 | mtbir 290 |
1
⊢ ¬ ∅ ∈ (A +c
1c) |