New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > opabbidv | GIF version |
Description: Equivalent wff's yield equal ordered-pair class abstractions (deduction rule). (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
opabbidv.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
opabbidv | ⊢ (φ → {〈x, y〉 ∣ ψ} = {〈x, y〉 ∣ χ}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎxφ | |
2 | nfv 1619 | . 2 ⊢ Ⅎyφ | |
3 | opabbidv.1 | . 2 ⊢ (φ → (ψ ↔ χ)) | |
4 | 1, 2, 3 | opabbid 4625 | 1 ⊢ (φ → {〈x, y〉 ∣ ψ} = {〈x, y〉 ∣ χ}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 {copab 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-opab 4624 |
This theorem is referenced by: opabbii 4627 csbopabg 4638 xpeq1 4799 xpeq2 4800 opabbi2dv 4868 resopab2 5002 cores 5085 f1oiso2 5501 f1od 5727 |
Copyright terms: Public domain | W3C validator |