New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > opkeq12 | GIF version |
Description: Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opkeq12 | ⊢ ((A = C ∧ B = D) → ⟪A, B⟫ = ⟪C, D⟫) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opkeq1 4059 | . 2 ⊢ (A = C → ⟪A, B⟫ = ⟪C, B⟫) | |
2 | opkeq2 4060 | . 2 ⊢ (B = D → ⟪C, B⟫ = ⟪C, D⟫) | |
3 | 1, 2 | sylan9eq 2405 | 1 ⊢ ((A = C ∧ B = D) → ⟪A, B⟫ = ⟪C, D⟫) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ⟪copk 4057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-un 3214 df-sn 3741 df-pr 3742 df-opk 4058 |
This theorem is referenced by: opkeq12i 4064 opkeq12d 4067 opkthg 4131 opkabssvvk 4208 sikss1c1c 4267 ins2kss 4279 ins3kss 4280 sfinltfin 4535 |
Copyright terms: Public domain | W3C validator |