New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > opkeq1 | GIF version |
Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) |
Ref | Expression |
---|---|
opkeq1 | ⊢ (A = B → ⟪A, C⟫ = ⟪B, C⟫) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3744 | . . 3 ⊢ (A = B → {A} = {B}) | |
2 | preq1 3799 | . . 3 ⊢ (A = B → {A, C} = {B, C}) | |
3 | 1, 2 | preq12d 3807 | . 2 ⊢ (A = B → {{A}, {A, C}} = {{B}, {B, C}}) |
4 | df-opk 4058 | . 2 ⊢ ⟪A, C⟫ = {{A}, {A, C}} | |
5 | df-opk 4058 | . 2 ⊢ ⟪B, C⟫ = {{B}, {B, C}} | |
6 | 3, 4, 5 | 3eqtr4g 2410 | 1 ⊢ (A = B → ⟪A, C⟫ = ⟪B, C⟫) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 {csn 3737 {cpr 3738 ⟪copk 4057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-un 3214 df-sn 3741 df-pr 3742 df-opk 4058 |
This theorem is referenced by: opkeq12 4061 opkeq1i 4062 opkeq1d 4065 opkthg 4131 opkelcnvkg 4249 otkelins2kg 4253 otkelins3kg 4254 opkelcokg 4261 opksnelsik 4265 opkelimagekg 4271 elimaksn 4283 sikexlem 4295 dfimak2 4298 insklem 4304 setswith 4321 ndisjrelk 4323 dfpw2 4327 dfaddc2 4381 dfnnc2 4395 nnsucelrlem1 4424 leltfintr 4458 ltfinex 4464 ltfintrilem1 4465 ltfintri 4466 ssfin 4470 eqpwrelk 4478 eqpw1relk 4479 ncfinraiselem2 4480 ncfinlowerlem1 4482 eqtfinrelk 4486 evenfinex 4503 oddfinex 4504 evenodddisjlem1 4515 nnadjoinlem1 4519 nnpweqlem1 4522 srelk 4524 sfintfinlem1 4531 tfinnnlem1 4533 sfinltfin 4535 spfinex 4537 vfinncvntnn 4548 vfinspss 4551 vfinncsp 4554 dfop2lem1 4573 setconslem1 4731 setconslem2 4732 setconslem3 4733 setconslem4 4734 setconslem6 4736 setconslem7 4737 df1st2 4738 dfswap2 4741 |
Copyright terms: Public domain | W3C validator |