New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > opkabssvvk | GIF version |
Description: Any Kuratowski ordered pair abstraction is a subset of (V ×k V). (Contributed by SF, 13-Jan-2015.) |
Ref | Expression |
---|---|
opkabssvvk | ⊢ {x ∣ ∃y∃z(x = ⟪y, z⟫ ∧ φ)} ⊆ (V ×k V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2353 | . . . . . . 7 ⊢ ⟪y, z⟫ = ⟪y, z⟫ | |
2 | vex 2862 | . . . . . . . 8 ⊢ y ∈ V | |
3 | vex 2862 | . . . . . . . 8 ⊢ z ∈ V | |
4 | opkeq12 4061 | . . . . . . . . 9 ⊢ ((w = y ∧ t = z) → ⟪w, t⟫ = ⟪y, z⟫) | |
5 | 4 | eqeq2d 2364 | . . . . . . . 8 ⊢ ((w = y ∧ t = z) → (⟪y, z⟫ = ⟪w, t⟫ ↔ ⟪y, z⟫ = ⟪y, z⟫)) |
6 | 2, 3, 5 | spc2ev 2947 | . . . . . . 7 ⊢ (⟪y, z⟫ = ⟪y, z⟫ → ∃w∃t⟪y, z⟫ = ⟪w, t⟫) |
7 | 1, 6 | ax-mp 5 | . . . . . 6 ⊢ ∃w∃t⟪y, z⟫ = ⟪w, t⟫ |
8 | elvvk 4207 | . . . . . 6 ⊢ (⟪y, z⟫ ∈ (V ×k V) ↔ ∃w∃t⟪y, z⟫ = ⟪w, t⟫) | |
9 | 7, 8 | mpbir 200 | . . . . 5 ⊢ ⟪y, z⟫ ∈ (V ×k V) |
10 | eleq1 2413 | . . . . 5 ⊢ (x = ⟪y, z⟫ → (x ∈ (V ×k V) ↔ ⟪y, z⟫ ∈ (V ×k V))) | |
11 | 9, 10 | mpbiri 224 | . . . 4 ⊢ (x = ⟪y, z⟫ → x ∈ (V ×k V)) |
12 | 11 | adantr 451 | . . 3 ⊢ ((x = ⟪y, z⟫ ∧ φ) → x ∈ (V ×k V)) |
13 | 12 | exlimivv 1635 | . 2 ⊢ (∃y∃z(x = ⟪y, z⟫ ∧ φ) → x ∈ (V ×k V)) |
14 | 13 | abssi 3341 | 1 ⊢ {x ∣ ∃y∃z(x = ⟪y, z⟫ ∧ φ)} ⊆ (V ×k V) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 {cab 2339 Vcvv 2859 ⊆ wss 3257 ⟪copk 4057 ×k cxpk 4174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-ss 3259 df-nul 3551 df-sn 3741 df-pr 3742 df-opk 4058 df-xpk 4185 |
This theorem is referenced by: opkabssvvki 4209 |
Copyright terms: Public domain | W3C validator |