New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > opkeq2 | GIF version |
Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) |
Ref | Expression |
---|---|
opkeq2 | ⊢ (A = B → ⟪C, A⟫ = ⟪C, B⟫) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq2 3801 | . . 3 ⊢ (A = B → {C, A} = {C, B}) | |
2 | 1 | preq2d 3807 | . 2 ⊢ (A = B → {{C}, {C, A}} = {{C}, {C, B}}) |
3 | df-opk 4059 | . 2 ⊢ ⟪C, A⟫ = {{C}, {C, A}} | |
4 | df-opk 4059 | . 2 ⊢ ⟪C, B⟫ = {{C}, {C, B}} | |
5 | 2, 3, 4 | 3eqtr4g 2410 | 1 ⊢ (A = B → ⟪C, A⟫ = ⟪C, B⟫) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 {csn 3738 {cpr 3739 ⟪copk 4058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 df-opk 4059 |
This theorem is referenced by: opkeq12 4062 opkeq2i 4064 opkeq2d 4067 opkelcnvkg 4250 otkelins2kg 4254 otkelins3kg 4255 elimakg 4258 opkelcokg 4262 elp6 4264 opksnelsik 4266 sikexlem 4296 insklem 4305 dfnnc2 4396 ltfintri 4467 lenltfin 4470 tfinltfin 4502 sfinltfin 4536 setconslem6 4737 |
Copyright terms: Public domain | W3C validator |