NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  xpexr GIF version

Theorem xpexr 5109
Description: If a cross product is a set, one of its components must be a set. (Contributed by set.mm contributors, 27-Aug-2006.)
Assertion
Ref Expression
xpexr ((A × B) C → (A V B V))

Proof of Theorem xpexr
StepHypRef Expression
1 0ex 4110 . . . . . 6 V
2 eleq1 2413 . . . . . 6 (A = → (A V ↔ V))
31, 2mpbiri 224 . . . . 5 (A = A V)
43pm2.24d 135 . . . 4 (A = → (¬ A V → B V))
54a1d 22 . . 3 (A = → ((A × B) C → (¬ A V → B V)))
6 rnexg 5104 . . . . 5 ((A × B) C → ran (A × B) V)
7 rnxp 5051 . . . . . 6 (A → ran (A × B) = B)
87eleq1d 2419 . . . . 5 (A → (ran (A × B) V ↔ B V))
96, 8syl5ib 210 . . . 4 (A → ((A × B) CB V))
109a1dd 42 . . 3 (A → ((A × B) C → (¬ A V → B V)))
115, 10pm2.61ine 2592 . 2 ((A × B) C → (¬ A V → B V))
1211orrd 367 1 ((A × B) C → (A V B V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wo 357   = wceq 1642   wcel 1710  wne 2516  Vcvv 2859  c0 3550   × cxp 4770  ran crn 4773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4440  df-ltfin 4441  df-ncfin 4442  df-tfin 4443  df-evenfin 4444  df-oddfin 4445  df-sfin 4446  df-spfin 4447  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-opab 4623  df-br 4640  df-ima 4727  df-xp 4784  df-cnv 4785  df-rn 4786  df-dm 4787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator