Step | Hyp | Ref
| Expression |
1 | | neq0 3561 |
. . . . . . 7
⊢ (¬ A = ∅ ↔
∃x
x ∈
A) |
2 | | ssel 3268 |
. . . . . . . . . . 11
⊢ (A ⊆ {B} → (x
∈ A
→ x ∈ {B})) |
3 | | elsni 3758 |
. . . . . . . . . . 11
⊢ (x ∈ {B} → x =
B) |
4 | 2, 3 | syl6 29 |
. . . . . . . . . 10
⊢ (A ⊆ {B} → (x
∈ A
→ x = B)) |
5 | | eleq1 2413 |
. . . . . . . . . 10
⊢ (x = B →
(x ∈
A ↔ B ∈ A)) |
6 | 4, 5 | syl6 29 |
. . . . . . . . 9
⊢ (A ⊆ {B} → (x
∈ A
→ (x ∈ A ↔
B ∈
A))) |
7 | 6 | ibd 234 |
. . . . . . . 8
⊢ (A ⊆ {B} → (x
∈ A
→ B ∈ A)) |
8 | 7 | exlimdv 1636 |
. . . . . . 7
⊢ (A ⊆ {B} → (∃x x ∈ A → B ∈ A)) |
9 | 1, 8 | syl5bi 208 |
. . . . . 6
⊢ (A ⊆ {B} → (¬ A = ∅ →
B ∈
A)) |
10 | | snssi 3853 |
. . . . . 6
⊢ (B ∈ A → {B}
⊆ A) |
11 | 9, 10 | syl6 29 |
. . . . 5
⊢ (A ⊆ {B} → (¬ A = ∅ →
{B} ⊆
A)) |
12 | 11 | anc2li 540 |
. . . 4
⊢ (A ⊆ {B} → (¬ A = ∅ →
(A ⊆
{B} ∧
{B} ⊆
A))) |
13 | | eqss 3288 |
. . . 4
⊢ (A = {B} ↔
(A ⊆
{B} ∧
{B} ⊆
A)) |
14 | 12, 13 | syl6ibr 218 |
. . 3
⊢ (A ⊆ {B} → (¬ A = ∅ →
A = {B})) |
15 | 14 | orrd 367 |
. 2
⊢ (A ⊆ {B} → (A =
∅ ∨
A = {B})) |
16 | | 0ss 3580 |
. . . 4
⊢ ∅ ⊆ {B} |
17 | | sseq1 3293 |
. . . 4
⊢ (A = ∅ →
(A ⊆
{B} ↔ ∅ ⊆ {B})) |
18 | 16, 17 | mpbiri 224 |
. . 3
⊢ (A = ∅ →
A ⊆
{B}) |
19 | | eqimss 3324 |
. . 3
⊢ (A = {B} →
A ⊆
{B}) |
20 | 18, 19 | jaoi 368 |
. 2
⊢ ((A = ∅ ∨ A = {B}) → A
⊆ {B}) |
21 | 15, 20 | impbii 180 |
1
⊢ (A ⊆ {B} ↔ (A =
∅ ∨
A = {B})) |