New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rabid2 | GIF version |
Description: An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
rabid2 | ⊢ (A = {x ∈ A ∣ φ} ↔ ∀x ∈ A φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2 2458 | . . 3 ⊢ (A = {x ∣ (x ∈ A ∧ φ)} ↔ ∀x(x ∈ A ↔ (x ∈ A ∧ φ))) | |
2 | pm4.71 611 | . . . 4 ⊢ ((x ∈ A → φ) ↔ (x ∈ A ↔ (x ∈ A ∧ φ))) | |
3 | 2 | albii 1566 | . . 3 ⊢ (∀x(x ∈ A → φ) ↔ ∀x(x ∈ A ↔ (x ∈ A ∧ φ))) |
4 | 1, 3 | bitr4i 243 | . 2 ⊢ (A = {x ∣ (x ∈ A ∧ φ)} ↔ ∀x(x ∈ A → φ)) |
5 | df-rab 2623 | . . 3 ⊢ {x ∈ A ∣ φ} = {x ∣ (x ∈ A ∧ φ)} | |
6 | 5 | eqeq2i 2363 | . 2 ⊢ (A = {x ∈ A ∣ φ} ↔ A = {x ∣ (x ∈ A ∧ φ)}) |
7 | df-ral 2619 | . 2 ⊢ (∀x ∈ A φ ↔ ∀x(x ∈ A → φ)) | |
8 | 4, 6, 7 | 3bitr4i 268 | 1 ⊢ (A = {x ∈ A ∣ φ} ↔ ∀x ∈ A φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 = wceq 1642 ∈ wcel 1710 {cab 2339 ∀wral 2614 {crab 2618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-ral 2619 df-rab 2623 |
This theorem is referenced by: rabxm 3573 iinrab2 4029 riinrab 4041 opeq 4619 dmmptg 5684 fmpt 5692 |
Copyright terms: Public domain | W3C validator |