| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > rabid2 | GIF version | ||
| Description: An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| rabid2 | ⊢ (A = {x ∈ A ∣ φ} ↔ ∀x ∈ A φ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabb 2459 | . . 3 ⊢ (A = {x ∣ (x ∈ A ∧ φ)} ↔ ∀x(x ∈ A ↔ (x ∈ A ∧ φ))) | |
| 2 | pm4.71 611 | . . . 4 ⊢ ((x ∈ A → φ) ↔ (x ∈ A ↔ (x ∈ A ∧ φ))) | |
| 3 | 2 | albii 1566 | . . 3 ⊢ (∀x(x ∈ A → φ) ↔ ∀x(x ∈ A ↔ (x ∈ A ∧ φ))) |
| 4 | 1, 3 | bitr4i 243 | . 2 ⊢ (A = {x ∣ (x ∈ A ∧ φ)} ↔ ∀x(x ∈ A → φ)) |
| 5 | df-rab 2624 | . . 3 ⊢ {x ∈ A ∣ φ} = {x ∣ (x ∈ A ∧ φ)} | |
| 6 | 5 | eqeq2i 2363 | . 2 ⊢ (A = {x ∈ A ∣ φ} ↔ A = {x ∣ (x ∈ A ∧ φ)}) |
| 7 | df-ral 2620 | . 2 ⊢ (∀x ∈ A φ ↔ ∀x(x ∈ A → φ)) | |
| 8 | 4, 6, 7 | 3bitr4i 268 | 1 ⊢ (A = {x ∈ A ∣ φ} ↔ ∀x ∈ A φ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 = wceq 1642 ∈ wcel 1710 {cab 2339 ∀wral 2615 {crab 2619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-ral 2620 df-rab 2624 |
| This theorem is referenced by: rabxm 3574 iinrab2 4030 riinrab 4042 opeq 4620 dmmptg 5685 fmpt 5693 |
| Copyright terms: Public domain | W3C validator |