NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  prcom GIF version

Theorem prcom 3799
Description: Commutative law for unordered pairs. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
prcom {A, B} = {B, A}

Proof of Theorem prcom
StepHypRef Expression
1 uncom 3409 . 2 ({A} ∪ {B}) = ({B} ∪ {A})
2 df-pr 3743 . 2 {A, B} = ({A} ∪ {B})
3 df-pr 3743 . 2 {B, A} = ({B} ∪ {A})
41, 2, 33eqtr4i 2383 1 {A, B} = {B, A}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642  cun 3208  {csn 3738  {cpr 3739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-un 3215  df-pr 3743
This theorem is referenced by:  preq2  3801  tpcoma  3817  tpidm23  3824  prid2g  3827  prid2  3829  difprsn2  3849  snprss2  4122  prprc1  4124  preqr2  4126  preq12b  4128  fvpr2  5451
  Copyright terms: Public domain W3C validator