New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > tpid1 | GIF version |
Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
tpid1.1 | ⊢ A ∈ V |
Ref | Expression |
---|---|
tpid1 | ⊢ A ∈ {A, B, C} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2353 | . . 3 ⊢ A = A | |
2 | 1 | 3mix1i 1127 | . 2 ⊢ (A = A ∨ A = B ∨ A = C) |
3 | tpid1.1 | . . 3 ⊢ A ∈ V | |
4 | 3 | eltp 3771 | . 2 ⊢ (A ∈ {A, B, C} ↔ (A = A ∨ A = B ∨ A = C)) |
5 | 2, 4 | mpbir 200 | 1 ⊢ A ∈ {A, B, C} |
Colors of variables: wff setvar class |
Syntax hints: ∨ w3o 933 = wceq 1642 ∈ wcel 1710 Vcvv 2859 {ctp 3739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-v 2861 df-nin 3211 df-compl 3212 df-un 3214 df-sn 3741 df-pr 3742 df-tp 3743 |
This theorem is referenced by: tpnz 3837 |
Copyright terms: Public domain | W3C validator |