| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > r19.23t | GIF version | ||
| Description: Closed theorem form of r19.23 2730. (Contributed by NM, 4-Mar-2013.) (Revised by Mario Carneiro, 8-Oct-2016.) |
| Ref | Expression |
|---|---|
| r19.23t | ⊢ (Ⅎxψ → (∀x ∈ A (φ → ψ) ↔ (∃x ∈ A φ → ψ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.23t 1800 | . 2 ⊢ (Ⅎxψ → (∀x((x ∈ A ∧ φ) → ψ) ↔ (∃x(x ∈ A ∧ φ) → ψ))) | |
| 2 | df-ral 2620 | . . 3 ⊢ (∀x ∈ A (φ → ψ) ↔ ∀x(x ∈ A → (φ → ψ))) | |
| 3 | impexp 433 | . . . 4 ⊢ (((x ∈ A ∧ φ) → ψ) ↔ (x ∈ A → (φ → ψ))) | |
| 4 | 3 | albii 1566 | . . 3 ⊢ (∀x((x ∈ A ∧ φ) → ψ) ↔ ∀x(x ∈ A → (φ → ψ))) |
| 5 | 2, 4 | bitr4i 243 | . 2 ⊢ (∀x ∈ A (φ → ψ) ↔ ∀x((x ∈ A ∧ φ) → ψ)) |
| 6 | df-rex 2621 | . . 3 ⊢ (∃x ∈ A φ ↔ ∃x(x ∈ A ∧ φ)) | |
| 7 | 6 | imbi1i 315 | . 2 ⊢ ((∃x ∈ A φ → ψ) ↔ (∃x(x ∈ A ∧ φ) → ψ)) |
| 8 | 1, 5, 7 | 3bitr4g 279 | 1 ⊢ (Ⅎxψ → (∀x ∈ A (φ → ψ) ↔ (∃x ∈ A φ → ψ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 ∈ wcel 1710 ∀wral 2615 ∃wrex 2616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2620 df-rex 2621 |
| This theorem is referenced by: r19.23 2730 rexlimd2 2737 |
| Copyright terms: Public domain | W3C validator |