New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iinun2 | GIF version |
Description: Indexed intersection of union. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 4021 to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004.) |
Ref | Expression |
---|---|
iinun2 | ⊢ ∩x ∈ A (B ∪ C) = (B ∪ ∩x ∈ A C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.32v 2758 | . . . 4 ⊢ (∀x ∈ A (y ∈ B ∨ y ∈ C) ↔ (y ∈ B ∨ ∀x ∈ A y ∈ C)) | |
2 | elun 3221 | . . . . 5 ⊢ (y ∈ (B ∪ C) ↔ (y ∈ B ∨ y ∈ C)) | |
3 | 2 | ralbii 2639 | . . . 4 ⊢ (∀x ∈ A y ∈ (B ∪ C) ↔ ∀x ∈ A (y ∈ B ∨ y ∈ C)) |
4 | vex 2863 | . . . . . 6 ⊢ y ∈ V | |
5 | eliin 3975 | . . . . . 6 ⊢ (y ∈ V → (y ∈ ∩x ∈ A C ↔ ∀x ∈ A y ∈ C)) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ (y ∈ ∩x ∈ A C ↔ ∀x ∈ A y ∈ C) |
7 | 6 | orbi2i 505 | . . . 4 ⊢ ((y ∈ B ∨ y ∈ ∩x ∈ A C) ↔ (y ∈ B ∨ ∀x ∈ A y ∈ C)) |
8 | 1, 3, 7 | 3bitr4i 268 | . . 3 ⊢ (∀x ∈ A y ∈ (B ∪ C) ↔ (y ∈ B ∨ y ∈ ∩x ∈ A C)) |
9 | eliin 3975 | . . . 4 ⊢ (y ∈ V → (y ∈ ∩x ∈ A (B ∪ C) ↔ ∀x ∈ A y ∈ (B ∪ C))) | |
10 | 4, 9 | ax-mp 5 | . . 3 ⊢ (y ∈ ∩x ∈ A (B ∪ C) ↔ ∀x ∈ A y ∈ (B ∪ C)) |
11 | elun 3221 | . . 3 ⊢ (y ∈ (B ∪ ∩x ∈ A C) ↔ (y ∈ B ∨ y ∈ ∩x ∈ A C)) | |
12 | 8, 10, 11 | 3bitr4i 268 | . 2 ⊢ (y ∈ ∩x ∈ A (B ∪ C) ↔ y ∈ (B ∪ ∩x ∈ A C)) |
13 | 12 | eqriv 2350 | 1 ⊢ ∩x ∈ A (B ∪ C) = (B ∪ ∩x ∈ A C) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∨ wo 357 = wceq 1642 ∈ wcel 1710 ∀wral 2615 Vcvv 2860 ∪ cun 3208 ∩ciin 3971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-iin 3973 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |