NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  iinun2 GIF version

Theorem iinun2 4032
Description: Indexed intersection of union. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 4020 to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004.)
Assertion
Ref Expression
iinun2 x A (BC) = (Bx A C)
Distinct variable group:   x,B
Allowed substitution hints:   A(x)   C(x)

Proof of Theorem iinun2
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 r19.32v 2757 . . . 4 (x A (y B y C) ↔ (y B x A y C))
2 elun 3220 . . . . 5 (y (BC) ↔ (y B y C))
32ralbii 2638 . . . 4 (x A y (BC) ↔ x A (y B y C))
4 vex 2862 . . . . . 6 y V
5 eliin 3974 . . . . . 6 (y V → (y x A Cx A y C))
64, 5ax-mp 5 . . . . 5 (y x A Cx A y C)
76orbi2i 505 . . . 4 ((y B y x A C) ↔ (y B x A y C))
81, 3, 73bitr4i 268 . . 3 (x A y (BC) ↔ (y B y x A C))
9 eliin 3974 . . . 4 (y V → (y x A (BC) ↔ x A y (BC)))
104, 9ax-mp 5 . . 3 (y x A (BC) ↔ x A y (BC))
11 elun 3220 . . 3 (y (Bx A C) ↔ (y B y x A C))
128, 10, 113bitr4i 268 . 2 (y x A (BC) ↔ y (Bx A C))
1312eqriv 2350 1 x A (BC) = (Bx A C)
Colors of variables: wff setvar class
Syntax hints:  wb 176   wo 357   = wceq 1642   wcel 1710  wral 2614  Vcvv 2859  cun 3207  ciin 3970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ral 2619  df-v 2861  df-nin 3211  df-compl 3212  df-un 3214  df-iin 3972
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator