| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > r19.30 | GIF version | ||
| Description: Theorem 19.30 of [Margaris] p. 90 with restricted quantifiers. (Contributed by Scott Fenton, 25-Feb-2011.) | 
| Ref | Expression | 
|---|---|
| r19.30 | ⊢ (∀x ∈ A (φ ∨ ψ) → (∀x ∈ A φ ∨ ∃x ∈ A ψ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralim 2686 | . 2 ⊢ (∀x ∈ A (¬ ψ → φ) → (∀x ∈ A ¬ ψ → ∀x ∈ A φ)) | |
| 2 | orcom 376 | . . . 4 ⊢ ((φ ∨ ψ) ↔ (ψ ∨ φ)) | |
| 3 | df-or 359 | . . . 4 ⊢ ((ψ ∨ φ) ↔ (¬ ψ → φ)) | |
| 4 | 2, 3 | bitri 240 | . . 3 ⊢ ((φ ∨ ψ) ↔ (¬ ψ → φ)) | 
| 5 | 4 | ralbii 2639 | . 2 ⊢ (∀x ∈ A (φ ∨ ψ) ↔ ∀x ∈ A (¬ ψ → φ)) | 
| 6 | orcom 376 | . . 3 ⊢ ((∀x ∈ A φ ∨ ¬ ∀x ∈ A ¬ ψ) ↔ (¬ ∀x ∈ A ¬ ψ ∨ ∀x ∈ A φ)) | |
| 7 | dfrex2 2628 | . . . 4 ⊢ (∃x ∈ A ψ ↔ ¬ ∀x ∈ A ¬ ψ) | |
| 8 | 7 | orbi2i 505 | . . 3 ⊢ ((∀x ∈ A φ ∨ ∃x ∈ A ψ) ↔ (∀x ∈ A φ ∨ ¬ ∀x ∈ A ¬ ψ)) | 
| 9 | imor 401 | . . 3 ⊢ ((∀x ∈ A ¬ ψ → ∀x ∈ A φ) ↔ (¬ ∀x ∈ A ¬ ψ ∨ ∀x ∈ A φ)) | |
| 10 | 6, 8, 9 | 3bitr4i 268 | . 2 ⊢ ((∀x ∈ A φ ∨ ∃x ∈ A ψ) ↔ (∀x ∈ A ¬ ψ → ∀x ∈ A φ)) | 
| 11 | 1, 5, 10 | 3imtr4i 257 | 1 ⊢ (∀x ∈ A (φ ∨ ψ) → (∀x ∈ A φ ∨ ∃x ∈ A ψ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 357 ∀wral 2615 ∃wrex 2616 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-ral 2620 df-rex 2621 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |