New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > r19.37 | GIF version |
Description: Restricted version of one direction of Theorem 19.37 of [Margaris] p. 90. (The other direction doesn't hold when A is empty.) (Contributed by FL, 13-May-2012.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
r19.37.1 | ⊢ Ⅎxφ |
Ref | Expression |
---|---|
r19.37 | ⊢ (∃x ∈ A (φ → ψ) → (φ → ∃x ∈ A ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.35 2758 | . 2 ⊢ (∃x ∈ A (φ → ψ) ↔ (∀x ∈ A φ → ∃x ∈ A ψ)) | |
2 | r19.37.1 | . . . 4 ⊢ Ⅎxφ | |
3 | ax-1 6 | . . . 4 ⊢ (φ → (x ∈ A → φ)) | |
4 | 2, 3 | ralrimi 2695 | . . 3 ⊢ (φ → ∀x ∈ A φ) |
5 | 4 | imim1i 54 | . 2 ⊢ ((∀x ∈ A φ → ∃x ∈ A ψ) → (φ → ∃x ∈ A ψ)) |
6 | 1, 5 | sylbi 187 | 1 ⊢ (∃x ∈ A (φ → ψ) → (φ → ∃x ∈ A ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1544 ∈ wcel 1710 ∀wral 2614 ∃wrex 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-ral 2619 df-rex 2620 |
This theorem is referenced by: r19.37av 2761 |
Copyright terms: Public domain | W3C validator |