New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > r19.36av | GIF version |
Description: One direction of a restricted quantifier version of Theorem 19.36 of [Margaris] p. 90. The other direction doesn't hold when A is empty. (Contributed by NM, 22-Oct-2003.) |
Ref | Expression |
---|---|
r19.36av | ⊢ (∃x ∈ A (φ → ψ) → (∀x ∈ A φ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.35 2759 | . 2 ⊢ (∃x ∈ A (φ → ψ) ↔ (∀x ∈ A φ → ∃x ∈ A ψ)) | |
2 | idd 21 | . . . 4 ⊢ (x ∈ A → (ψ → ψ)) | |
3 | 2 | rexlimiv 2733 | . . 3 ⊢ (∃x ∈ A ψ → ψ) |
4 | 3 | imim2i 13 | . 2 ⊢ ((∀x ∈ A φ → ∃x ∈ A ψ) → (∀x ∈ A φ → ψ)) |
5 | 1, 4 | sylbi 187 | 1 ⊢ (∃x ∈ A (φ → ψ) → (∀x ∈ A φ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1710 ∀wral 2615 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-ral 2620 df-rex 2621 |
This theorem is referenced by: iinss 4018 |
Copyright terms: Public domain | W3C validator |