New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssiun | GIF version |
Description: Subset implication for an indexed union. (Contributed by NM, 3-Sep-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
ssiun | ⊢ (∃x ∈ A C ⊆ B → C ⊆ ∪x ∈ A B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3268 | . . . . 5 ⊢ (C ⊆ B → (y ∈ C → y ∈ B)) | |
2 | 1 | reximi 2722 | . . . 4 ⊢ (∃x ∈ A C ⊆ B → ∃x ∈ A (y ∈ C → y ∈ B)) |
3 | r19.37av 2762 | . . . 4 ⊢ (∃x ∈ A (y ∈ C → y ∈ B) → (y ∈ C → ∃x ∈ A y ∈ B)) | |
4 | 2, 3 | syl 15 | . . 3 ⊢ (∃x ∈ A C ⊆ B → (y ∈ C → ∃x ∈ A y ∈ B)) |
5 | eliun 3974 | . . 3 ⊢ (y ∈ ∪x ∈ A B ↔ ∃x ∈ A y ∈ B) | |
6 | 4, 5 | syl6ibr 218 | . 2 ⊢ (∃x ∈ A C ⊆ B → (y ∈ C → y ∈ ∪x ∈ A B)) |
7 | 6 | ssrdv 3279 | 1 ⊢ (∃x ∈ A C ⊆ B → C ⊆ ∪x ∈ A B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1710 ∃wrex 2616 ⊆ wss 3258 ∪ciun 3970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-iun 3972 |
This theorem is referenced by: iunss2 4012 iunpwss 4056 |
Copyright terms: Public domain | W3C validator |