| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > r19.43 | GIF version | ||
| Description: Restricted version of Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| r19.43 | ⊢ (∃x ∈ A (φ ∨ ψ) ↔ (∃x ∈ A φ ∨ ∃x ∈ A ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.35 2759 | . 2 ⊢ (∃x ∈ A (¬ φ → ψ) ↔ (∀x ∈ A ¬ φ → ∃x ∈ A ψ)) | |
| 2 | df-or 359 | . . 3 ⊢ ((φ ∨ ψ) ↔ (¬ φ → ψ)) | |
| 3 | 2 | rexbii 2640 | . 2 ⊢ (∃x ∈ A (φ ∨ ψ) ↔ ∃x ∈ A (¬ φ → ψ)) |
| 4 | df-or 359 | . . 3 ⊢ ((∃x ∈ A φ ∨ ∃x ∈ A ψ) ↔ (¬ ∃x ∈ A φ → ∃x ∈ A ψ)) | |
| 5 | ralnex 2625 | . . . 4 ⊢ (∀x ∈ A ¬ φ ↔ ¬ ∃x ∈ A φ) | |
| 6 | 5 | imbi1i 315 | . . 3 ⊢ ((∀x ∈ A ¬ φ → ∃x ∈ A ψ) ↔ (¬ ∃x ∈ A φ → ∃x ∈ A ψ)) |
| 7 | 4, 6 | bitr4i 243 | . 2 ⊢ ((∃x ∈ A φ ∨ ∃x ∈ A ψ) ↔ (∀x ∈ A ¬ φ → ∃x ∈ A ψ)) |
| 8 | 1, 3, 7 | 3bitr4i 268 | 1 ⊢ (∃x ∈ A (φ ∨ ψ) ↔ (∃x ∈ A φ ∨ ∃x ∈ A ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∀wral 2615 ∃wrex 2616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-ral 2620 df-rex 2621 |
| This theorem is referenced by: r19.44av 2768 r19.45av 2769 r19.45zv 3648 iunun 4047 nncdiv3 6278 |
| Copyright terms: Public domain | W3C validator |