New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > r19.42v | GIF version |
Description: Restricted version of Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
r19.42v | ⊢ (∃x ∈ A (φ ∧ ψ) ↔ (φ ∧ ∃x ∈ A ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.41v 2764 | . 2 ⊢ (∃x ∈ A (ψ ∧ φ) ↔ (∃x ∈ A ψ ∧ φ)) | |
2 | ancom 437 | . . 3 ⊢ ((φ ∧ ψ) ↔ (ψ ∧ φ)) | |
3 | 2 | rexbii 2639 | . 2 ⊢ (∃x ∈ A (φ ∧ ψ) ↔ ∃x ∈ A (ψ ∧ φ)) |
4 | ancom 437 | . 2 ⊢ ((φ ∧ ∃x ∈ A ψ) ↔ (∃x ∈ A ψ ∧ φ)) | |
5 | 1, 3, 4 | 3bitr4i 268 | 1 ⊢ (∃x ∈ A (φ ∧ ψ) ↔ (φ ∧ ∃x ∈ A ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wrex 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-rex 2620 |
This theorem is referenced by: ceqsrexbv 2973 ceqsrex2v 2974 2reuswap 3038 2reu5 3044 iunrab 4013 iunin2 4030 iundif2 4033 addcass 4415 elxp2 4802 cnvuni 4895 f1oiso 5499 |
Copyright terms: Public domain | W3C validator |