New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rabbiia | GIF version |
Description: Equivalent wff's yield equal restricted class abstractions (inference rule). (Contributed by NM, 22-May-1999.) |
Ref | Expression |
---|---|
rabbiia.1 | ⊢ (x ∈ A → (φ ↔ ψ)) |
Ref | Expression |
---|---|
rabbiia | ⊢ {x ∈ A ∣ φ} = {x ∈ A ∣ ψ} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbiia.1 | . . . 4 ⊢ (x ∈ A → (φ ↔ ψ)) | |
2 | 1 | pm5.32i 618 | . . 3 ⊢ ((x ∈ A ∧ φ) ↔ (x ∈ A ∧ ψ)) |
3 | 2 | abbii 2466 | . 2 ⊢ {x ∣ (x ∈ A ∧ φ)} = {x ∣ (x ∈ A ∧ ψ)} |
4 | df-rab 2624 | . 2 ⊢ {x ∈ A ∣ φ} = {x ∣ (x ∈ A ∧ φ)} | |
5 | df-rab 2624 | . 2 ⊢ {x ∈ A ∣ ψ} = {x ∣ (x ∈ A ∧ ψ)} | |
6 | 3, 4, 5 | 3eqtr4i 2383 | 1 ⊢ {x ∈ A ∣ φ} = {x ∈ A ∣ ψ} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 {crab 2619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-rab 2624 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |