New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rabbidva | GIF version |
Description: Equivalent wff's yield equal restricted class abstractions (deduction rule). (Contributed by NM, 28-Nov-2003.) |
Ref | Expression |
---|---|
rabbidva.1 | ⊢ ((φ ∧ x ∈ A) → (ψ ↔ χ)) |
Ref | Expression |
---|---|
rabbidva | ⊢ (φ → {x ∈ A ∣ ψ} = {x ∈ A ∣ χ}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbidva.1 | . . 3 ⊢ ((φ ∧ x ∈ A) → (ψ ↔ χ)) | |
2 | 1 | ralrimiva 2697 | . 2 ⊢ (φ → ∀x ∈ A (ψ ↔ χ)) |
3 | rabbi 2789 | . 2 ⊢ (∀x ∈ A (ψ ↔ χ) ↔ {x ∈ A ∣ ψ} = {x ∈ A ∣ χ}) | |
4 | 2, 3 | sylib 188 | 1 ⊢ (φ → {x ∈ A ∣ ψ} = {x ∈ A ∣ χ}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∀wral 2614 {crab 2618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-ral 2619 df-rab 2623 |
This theorem is referenced by: rabbidv 2851 rabeqbidva 2855 rabbi2dva 3463 |
Copyright terms: Public domain | W3C validator |