New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbralie | GIF version |
Description: Implicit to explicit substitution that swaps variables in a quantified expression. (Contributed by NM, 5-Sep-2004.) |
Ref | Expression |
---|---|
sbralie.1 | ⊢ (x = y → (φ ↔ ψ)) |
Ref | Expression |
---|---|
sbralie | ⊢ (∀x ∈ y φ ↔ [y / x]∀y ∈ x ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvralsv 2847 | . . 3 ⊢ (∀y ∈ x ψ ↔ ∀z ∈ x [z / y]ψ) | |
2 | 1 | sbbii 1653 | . 2 ⊢ ([y / x]∀y ∈ x ψ ↔ [y / x]∀z ∈ x [z / y]ψ) |
3 | nfv 1619 | . . 3 ⊢ Ⅎx∀z ∈ y [z / y]ψ | |
4 | raleq 2808 | . . 3 ⊢ (x = y → (∀z ∈ x [z / y]ψ ↔ ∀z ∈ y [z / y]ψ)) | |
5 | 3, 4 | sbie 2038 | . 2 ⊢ ([y / x]∀z ∈ x [z / y]ψ ↔ ∀z ∈ y [z / y]ψ) |
6 | cbvralsv 2847 | . . 3 ⊢ (∀z ∈ y [z / y]ψ ↔ ∀x ∈ y [x / z][z / y]ψ) | |
7 | nfv 1619 | . . . . . 6 ⊢ Ⅎzψ | |
8 | 7 | sbco2 2086 | . . . . 5 ⊢ ([x / z][z / y]ψ ↔ [x / y]ψ) |
9 | nfv 1619 | . . . . . 6 ⊢ Ⅎyφ | |
10 | sbralie.1 | . . . . . . . 8 ⊢ (x = y → (φ ↔ ψ)) | |
11 | 10 | bicomd 192 | . . . . . . 7 ⊢ (x = y → (ψ ↔ φ)) |
12 | 11 | equcoms 1681 | . . . . . 6 ⊢ (y = x → (ψ ↔ φ)) |
13 | 9, 12 | sbie 2038 | . . . . 5 ⊢ ([x / y]ψ ↔ φ) |
14 | 8, 13 | bitri 240 | . . . 4 ⊢ ([x / z][z / y]ψ ↔ φ) |
15 | 14 | ralbii 2639 | . . 3 ⊢ (∀x ∈ y [x / z][z / y]ψ ↔ ∀x ∈ y φ) |
16 | 6, 15 | bitri 240 | . 2 ⊢ (∀z ∈ y [z / y]ψ ↔ ∀x ∈ y φ) |
17 | 2, 5, 16 | 3bitrri 263 | 1 ⊢ (∀x ∈ y φ ↔ [y / x]∀y ∈ x ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 [wsb 1648 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |