New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rabeq0 | GIF version |
Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) |
Ref | Expression |
---|---|
rabeq0 | ⊢ ({x ∈ A ∣ φ} = ∅ ↔ ∀x ∈ A ¬ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralnex 2625 | . 2 ⊢ (∀x ∈ A ¬ φ ↔ ¬ ∃x ∈ A φ) | |
2 | rabn0 3571 | . . 3 ⊢ ({x ∈ A ∣ φ} ≠ ∅ ↔ ∃x ∈ A φ) | |
3 | 2 | necon1bbii 2569 | . 2 ⊢ (¬ ∃x ∈ A φ ↔ {x ∈ A ∣ φ} = ∅) |
4 | 1, 3 | bitr2i 241 | 1 ⊢ ({x ∈ A ∣ φ} = ∅ ↔ ∀x ∈ A ¬ φ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 = wceq 1642 ∀wral 2615 ∃wrex 2616 {crab 2619 ∅c0 3551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-rab 2624 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 |
This theorem is referenced by: rabnc 3575 nmembers1lem2 6270 |
Copyright terms: Public domain | W3C validator |